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Summary 
 

In recent years, the global marine logistics industry has changed significantly because of the influence of the global movement 
of goods; this situation has increased the importance of developing ships that meet market requirements. One such change is the 
exponential growth in the amount of available data, and attention paid to big data analysis in a variety of fields. It is now possible to 
obtain vast amounts of marine logistics data, e.g., port, ship, route, international trade, and automatic identification system data. If 
these data are effectively utilized, great innovation can be achieved in the marine logistics industry.  

In this study, we develop a ship allocation model that can predict the demand for bulk carriers and examine the effective 
principal particulars of ships for cargo transportation. To realize these goals, we develop three distinct models—shipper, shipowner, 
and operator models—using statistical, hierarchical, and deep learning analysis methods. Moreover, we examine the principal 
particulars of ships that are expected to be in demand to demonstrate the effectiveness of our proposed model. 

 
 

1. Introduction 
 

Big data can typically be thought of as datasets that are large, 
complex, and generated at high speeds. The most highlighted 
characteristics of big data are its high volume, velocity, and/or 
variety. Big data provides information that can make maritime 
operation efficient1). Moreover, it is widely believed that big data 
in the maritime industry can aid in improving forecasts2),3).  

There is significant potential and high value hidden in the 
huge volumes of data that are widely used in various fields, 
including the marine logistics industry. The global marine 
logistics industry has changed significantly because of influence 
from the global movement of goods. Hence, it is important to 
develop ships that meet specific needs and market requirements.  

Simultaneously, marine logistics data can be acquired more 
easily than ever before (e.g., port, ship, route, trade, and 
Automatic Identification System (AIS) data). If these data are 
effectively utilized, great innovation might be achieved. 

Many studies have applied big data to the maritime industry. 
For construction applications, Hiekata et al.4) proposed a 
high-accuracy block component measurement method that uses 
point cloud data from a 3D laser scanner. Aoyama et al.5) 
proposed new methods of extracting and utilizing monitoring data 
by introducing two additional monitoring technologies and 
considering the reliability of each for advanced shipbuilding 
construction management. 

 

In the operations field, Perera et al.6) analyzed large ship 
performance datasets to propose a model for evaluating ship 
performance under various seagoing conditions. Ando et al.7) and 
Yoshida et al.8) proposed a data collection platform called the 
Ship Information Management System and utilized the data 
collected for many purposes (e.g., energy efficiency 
determinations, ship performance monitoring, and engine 
monitoring).         

Note that many of these studies have employed big data to 
improve ship construction, operation, and performance; few have 
examined the use of big data for ship demand prediction9). 
However, detailed predictions of the routes on which demand will 
increase are currently difficult to execute. Therefore, the objective 
of this study is to develop a support system for basic ship 
planning by predicting the demand for new ships. To realize the 
objective, we focus on the following two points: 
• Ship allocation model: By inputting the present condition of 

trade, the number of ships, fuel prices, allowable ships, etc., 
we can implement actual ship allocation using our model. 

• Simulations using the ship allocation model: By inputting the 
new ship principal particulars, we can predict the demand for 
a new ship using the ship allocation model. Therefore, by 
executing simulations, we can examine effective ship 
principal particulars. 
The ship allocation model and simulations using the ship 

allocation model are developed using information extracted from 
the Marine Logistics Database (MLDB), which we developed in a 
previous study (see Section 2). The details and effectiveness of 
the proposed model are discussed in this paper. We consider bulk 
carriers that operate between Australia and Japan as an example. 
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2.  Overview of Previous Study 
 

2. 1 Marine Logistics Database 
In a previous study, the authors developed the MLDB using 

AIS and statistical data10). The MLDB consists of the latest 
marine logistics data, i.e., operation information from AIS, ship, 
port, route and international trading information, as shown in Fig. 
1. The data are managed, integrated, and structured to derive 
valuable insights from information buried in marine logistics data. 

 

Fig. 1 Basic concept of previous study 
 

2. 2 MLDB Input Data 
To develop the MLDB, we employed the following data as 

input. 
• AIS data: indicated speed, indicated draft, ship position, 

timing arrival and departure dates, and arrival and departure 
port collected from the Market Intelligence Network 11).  

• Port data: port name, longitude, latitude, port dimension, and 
cargo handling collected from Sea-web Port12). 

• Ship data: ship name, deadweight, International Maritime 
Organization number, classification, ship dimension, operator, 
shipbuilder, ship status, and build year collected from 
Sea-web Ship13). 

• Route data: departure port, arrival port, route choices, and 
distances collected from Sea-web Port and IHS-Fairplay12),14). 

• Trade data: commodity trade, the period of trade between 
countries, commodity code, trade value, trade quantity, 
reporter, and partner collected from UN Comtrade15).  
 

2. 3 Data Structure  
To more easily extract valuable information, we defined a 

structure for the MLDB and modified unstructured data into a 
relational database. For example, by integrating ship and port data 
with operation data, some information related to a ship’s 
operational state can be analyzed (e.g., berthing, anchoring, or 
sailing). A detailed explanation of the data structure can be found 
in the earlier study. 
 
2. 4 Error Cleaning  

To ensure and the reliability and quality of the data used to 
construct the MLDB, the following error cleaning methods were 
performed. 
• Keeping the first data recorded in AIS based on the arrival 

date and time, and deleting duplicate data points.  
• Deleting unrealistic voyage data by checking the average 

voyage speed, which is calculated by considering the 
navigation days and distance between two ports. If the 
average voyage speed exceeds the service speed, it is defined 
as an error and the data are deleted. 

• Deleting inappropriate zero values, such as 0-m drafts, null 
data, and unavailable data. 

2. 5 Generating Cargo Information 
Cargo information on an operating ship are important for 

demand forecasting and understanding the ship’s use. However, 
such information does not exist in AIS data. Therefore, we 
estimated the cargo type and volume of each operation. In the 
case of a bulk carrier, the cargo type is selected from three types: 
iron ore, coal, and grain and minor bulk (MB). The estimation 
methods used in the previous study are described as follows. 
2. 5. 1 Checking data reliability  

Confirmation of data’s reliability is required to for a good 
cargo volume estimation. In our study, data reliability were 
evaluated by checking the draft rate di by using Eq. (1) 

(1)
           

where dsail(i) (m) is the sailing draft and dmax(i) (m) is the maximum 

draft of the ship. 
2. 5. 2 Estimating cargo type using port data 

By identifying the cargo type from port data, the cargo of 
each operation could be estimated. As shown in Table 1, cargo 
type estimation was conducted by checking the combination of 
cargo from the arrival and departure ports. In the case of 
operation from Port A to Port D, the only common cargo is coal. 
Therefore, the cargo type was estimated to be coal. In contrast, in 
the case of operation from Port B to Port D, there are two 
common cargos: coal and iron ore. In this case, cargo type was 
defined as multi-cargo and decided using the ship size. 

 
Table 1 Checking cargo type combinations using a matrix 

2. 5. 3 Estimating cargo type using ship size 
If two or more common cargo types exist in port data, the 

cargo types were estimated using ship size. Since ship size and 
cargo type are closely related, the remaining operation could be 
estimated.  
2. 5. 4 Estimating cargo volume 

Ship data has information on the deadweight and maximum 
draft of the target ship, while AIS data has information about the 
sailing draft. The cargo volume was basically estimated using Eq. 
(2).  
 
 
where Vi (ton) is cargo volume, DWTi is deadweight, and di is the 
draft rate.  

Operation conditions of ships were defined as loading, ballast, 
and unknown. In the unknown condition, cargo volume was 
estimated by considering the average draft of ships of the same 
size operating on the same route. 

 

(2) 
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Fig. 2 Basic concept of ship allocation 

2. 6 Confirmation of Cargo Estimation 
To verify the cargo estimation in Section 2.5, we compared 

our results with actual trade value from UN Comtrade data, using 
bulk carriers operating from Australia to Japan in 2014 as an 
example. The estimation result covered about 94% of coal cargo, 
90% of iron ore cargo, 97% of grain and MB cargo, and 94% of 
all cargo, validating our cargo estimation method. 
 
2. 7 Extracting Data for a Ship Allocation Model Using the 

MLDB 
The following information can be extracted from the MLDB 

to develop a ship allocation model and execute simulations: 
• Ship information: deadweight (DWT), length overall (LOA), 

breadth (B), depth (D), draft (d), service speed (knot), horse 
power (HP), ship operator, shipbuilder etc.  

• Port information: port constraints (e.g. maximum DWT, 
maximum draft (m), maximum length (m), maximum breadth 
(m)), cargo handling, position of port, country etc. 

• Operation information: departure and arrival times, arrival 
and departure ports, cargo type, cargo volume, operator etc. 

• Trade information: trade article and volume between ports 
and countries. 

• Others: new construction of shipbuilding price index, fuel 
price. 
 

3.   Basic Concept of this Study 
 

The basic concept of this study is shown in Fig. 2, which 
highlights the two important steps for realizing the objectives laid 
out in Section 1: first, developing a ship allocation model, and 
second, carrying out simulations using the ship allocation model. 

The data for developing the ship allocation model and 
conducting simulations is extracted from the MLDB. An 
overview of these concepts is given in this section. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. 1 Development of the Ship Allocation Model 
3. 1. 1 Overview of the ship allocation model 

A ship allocation model can reproduce actual ship allocation. 
Input and output data of the ship allocation model are shown in 
Table 2. 

 
Table 2 Input and output of ship allocation ship 

 
Input 

Trade conditions: fuel price, trade volume between 
the ports. 
Allowable ships specifications: DWT, LOA (m), B 
(m), D (m), d (m), service speed (knot), horsepower  
Constraints of the canal and ports: Max DWT, max 
LOA (m), max B (m), and max D (m) etc. 
Number of allowable ships 

Output Ship allocation of all ships 
 
3. 1. 2 Configurations of the ship allocation model 

To realize actual ship allocation conditions, we develop three 
distinct models—the shipper, shipowner, and operator models. 
• The shipper model issues a request for cargo transportation 

between two or more ports. The shipper model is defined 
using cluster analysis.  

• The shipowner model estimates the shipment days, amount of 
cargo, and operating cost in response the cargo transportation 
requests. The shipowner model is defined using deep learning 
analysis. 

• The operator model requests all shipowner models to estimate 
shipment costs, cargo volume, and transport time based on 
shipper requests; then, based on the answer from the 
shipowner model, the operator model decides on a ship for 
cargo transport. 

A detailed explanation of ship allocation is shown in Section 4, 
and the confirmation of the proposed models is shown in Section 
5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MLDB10)

Operation Data
Loaded Cargo

Restriction of Port

Influential Factors of World 
Trade

Information of Canal & Port
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Allowable Ship
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S1 S2 S3 S4 S5 S6

P1 0 0 1 0 2 0
P2 0 0 1 0 3 2
P3 0 0 0 1 0 0
P4 5 1 0 0 0 0
P5 2 0 0 0 0 0

S1 S2 S3 S4 S5 S6

P1 -0.7 -0.7 0.65 -0.7 1.96 -0.7
P2 -0.9 -0.9 0 -0.9 1.73 0.87
P3 -0.4 -0.4 -0.4 2.24 -0.4 -0.4
P4 2.19 0 -0.5 -0.5 -0.5 -0.5
P5 2.24 -0.4 -0.4 -0.4 -0.4 -0.4

P1 P2 P3 P4 P5

P1 1.71 3.94 4.04 3.94
P2 1.71 4.08 4.21 4.08
P3 3.94 4.08 3.87 3.79
P4 4.04 4.21 3.87 0.49
P5 3.94 4.08 3.79 0.49

Ship
Port

Ship
Port

Port
Port

(1) Port Calling Calculation

(2) Standardization

(3) Calculation of Euclidean distances

3. 2 Simulations Using the Ship Allocation Model 
In the ship allocation model, a competitive ship is allocated to 

a prioritized route. Moreover, following data can be set freely in 
executing the simulation:  
• Future scenario (fuel price, trade volume between ports) 
• New ship specifications 
• Number of ships (freely selectable by the operator) 
• Constraints of ports and canals 
With these characteristics, we can execute the following 
simulations: 
(1) Examination of the supply–demand balance of various ships 

In our system, supply is defined as a ship allocation only 
using existing ships, and demand is defined as a ship allocation in 
which all the ships can be used freely for cargo transportation. 
Therefore, by changing the number of ships that can be used in 
the simulation, we can estimate the supply–demand balance. 
(2) Examination of effective ship specifications 

As discussed in the previous section, we can change the 
specifications freely. Then, by changing ship specifications and 
simulating ship allocation, we can understand the demand for 
various kind of ships. Therefore, by executing this simulation, we 
can examine effective ship specifications and the kinds of ships 
that are attractive for operation on the intended routes. 
(3) Influence of economic situations on demand 

In our system, port constraints can be changed. Moreover, 
fuel price and trade volume between the ports can be freely 
changed. By forecasting such a future situation using a ship 
allocation model, we can understand logistics and demand results. 
Moreover, we can understand the kinds of ships that will operate 
effectively on intended routes in the future. 

In this paper, we take bulk carriers that operate between 
Australia and Japan as an example. Detailed simulations are 
shown in Section 6.  

 
4. Development of the Ship Allocation Model  
 

As discussed in Section 3, the ship allocation model is 
composed of shipper, shipowner, and operator models. The data 
extracted from the MLDB were used to develop these models. 
Details of these three models are discussed in this section.  

 
4. 1 Shipper Model 

The shipper model issues a request for cargo transportation 
between two or more ports from Australia to Japan. Herein, the 
shipper model was generated using cluster analysis, which is a 
method of defining similarities in data, grouping similar items, 
and classifying them into clusters. Using hierarchical cluster 
analysis, we clustered shippers between Japan and Australia. We 
generated the shipper model using the following steps: 
4. 1. 1 Extracting operation data from the MLDB 

Operation data from 2014 from Australia to Japan were 
extracted from the MLDB. The information extracted from the 
MLDB included operation, port (origin and destination), and ship 
(name, principal particulars, etc.) data. By utilizing these data, we 
easily analyzed the number of port callings from Australia to 
Japan. 
4. 1. 2 Define the shipper using cluster analysis 

To define a shipper between Australia and Japan, we 
identified the number of port callings in 2014 using cluster 

analysis. The clustering process can be described as follows: 
(1) Calculate the number of port callings 

The number of port callings was calculated by identifying 
data extracted from the MLDB. By using a matrix between the 
ports (P1, P2, …, Pn) and ships (S1, S2, …, Sn). As shown in 
Table 3(1), the number of port callings could be calculated. 
(2) Measure the Euclidean distance  

Euclidean distance is a measure of the true straight-line 
distance between two points in Euclidean space. In hierarchical 
clustering, in which the distance measure is Euclidean, data must 
first be normalized or standardized to prevent the covariant with 
the highest variance from driving the clustering.  

The data consist of many calling ships whose weights and 
numbers of calls differ. Therefore, it was necessary to standardize 
the differences in each property. Data standardization was 
performed as shown in Table 3(2) for each port. Then, the 
Euclidean distance was calculated using Eq. (3), the result of 
which is shown in Table 3(3). 
 
  
 
where xi and yi are the number of calls after standardizing ship i at 
ports x and y, respectively. 
 

Table 3 Cluster analysis process 
 

 

 
(3) Clustering using hierarchical cluster analysis 

First, before any clustering was performed, it was necessary to 
populate a proximity matrix with the distance between each point 
using a distance function. Then, the matrix was updated to display 
the distance between each cluster. In this study, to measure the 
distance between two clusters, we applied the average linkage 
method, which is commonly used and represents a natural 
compromise between linkage measures to provide a more 
accurate evaluation of the distance between clusters16). The 
distance between two clusters is calculated using Eq. (4). 

(3)
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Hidden layers

Output layer

Input
layer

 
 
where Cn is a cluster, xn is a port, and d(C1,C2) is the distance 
between cluster C1 and C2.  

The goal of this method was to group heterogeneous port data 
into homogeneous clusters. By doing so, we could identify groups 
without previous knowledge of group membership or even the 
number of possible groups. Thus, shippers operating between 
Australia and Japan could easily be defined. Hierarchical cluster 
analysis is best illustrated using a dendrogram (a visual display of 
the clustering process). As shown in Fig. 3, the ports were 
grouped into four clusters (Shippers A–D), defined as follows: 
• Shipper A (Kawasaki, Mizushima, Chiba, and Fukuyama) 
• Shipper B (Oita, Kashima, and Kisarazu) 
• Shipper C (Nagoya, Wakayama, and Tobata) 
• Shipper D (Higashi-Harima, Himeji, Kure, Saganoseki, 

Tomakomai, and Hachinohe) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Dendrogram of cluster results 
 

As shown in Fig. 3, the destination ports (Japan) can be 
identified clearly. However, to identify the origin ports 
(Australia), we checked the operation of each cluster and then 
selected its origin port of each cluster. As a result, the shippers 
from Australia to Japan were generated as in Table 4. 

 
Table 4 Shippers from Australia to Japan 

 
Shipper Origin Port Destination Port 

A 

Dampier Chiba 
Parker Point Fukuyama 
Port Hedland Mizushima 
Port Walcott Kawasaki 
Esperance   

B 

Dampier Kashima 
Parker Point  Kisarazu 
Port Hedland  Oita 
Port Walcott    
Esperance   

C Port Walcott 
Nagoya  
Tobata 
Wakayama 

D 
Port Hedland 
Port Walcott 

  

Higashi-Harima 
Kure 
Himeji 

4. 2 Shipowner Model 
The shipowner model can be used to estimate shipment days, 

cargo amounts, and shipment cost in response to a transportation 
request from an operator. To realize this model, we generated the 
draft rate, average speed in loading and ballast conditions, and 
time in port due to loading and ballast conditions using deep 
learning on data extracted from the MLDB. 
4. 2. 1 Estimation using deep learning  

Deep learning is an expressive machine learning technique 
that has recently attracted considerable attention. Machine 
learning is a mechanism for inputting training data into a learning 
machine, generating a learning model, and processing data using 
the learned model. The key benefit of deep learning is the 
analysis of massive amounts of unsupervised data, making it a 
valuable tool in big data analytics17). 

As shown in Fig. 4, the first layer of a neural network used for 
deep learning is the input layer. Each node in this layer takes an 
input and passes its output as input to each node in the next 
(hidden) layer, which have no connection to the outside and are 
only activated by nodes in the previous layer. 

 
 
 
 

 

 
 
 
 
 
 

Fig. 4 Structure of a deep learning neural network 
 
In this study, draft rate, average voyage speed, and time in 

port were predicted using the following steps: 
(1) Collect training data 

Usually, neural networks are trained to perform single-step 
prediction, in which the predictor uses some available input and 
outputs observations to estimate a variable of interest for the 
timestep immediately following the latest observation18)19). In this 
study, all shipping data were extracted from the MLDB. Around 
75% of ship operation data from Australia to Japan in 2014 were 
used for training data and the remaining 25% were used for 
evaluation. 
(2) Generate learning model 

To generate a learning model, the input layer, output layer, 
and hyperparameters were set as follows: 
• The input layer for the deep learning analysis in this model 

takes information including ship DWT, length, breadth, depth, 
draft, service speed, horsepower, year built, distance between 
routes, operator, shipyard, maximum draft, arrival limit, 
departure limit, new construction of shipbuilding price index, 
and loading and unloading ports. 

• The output layer outputs the expected result, i.e., draft rate 
during navigation (loading and unloading), average voyage 
speed (at loading and ballasting), and time in port (at loading 
and ballasting). 
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• Hyperparameters must be set as priors to optimize the model 
by minimizing the cost function of learning from the dataset. 
The hyperparameters used to generate the deep learning 
models are shown in Table 5.  

 
Table 5 Deep learning hyperparameters  

  
4. 2. 2 Calculating the shipment time, cargo amount, and cost 

We next used deep learning estimation results to calculate the 
number of shipment days, amount of cargo, and shipment cost. 
Shipment days were calculated by considering the route distance, 
navigation speed, and time in port. The cargo transport volume 
was calculated based on the method developed by Kigure et al.20) 
and the shipment cost was calculated using the method from 
Aoyama et al.21) using the generated data. 

 
4. 3 Operator Model 

The operator model collects estimation results from the 
shipowner model. The procedure to determine ship allocation is 
as follows:  
(1) Calculate the total cost and cargo volume  

As shown in Table 6(1), shipowners bid for all shipment 
requests (Ships A–D) based on each selected route (Routes A–B) 
from Shippers A and B. The cost per unit transport volume was 
calculated by considering the total operation cost and total 
transportation volume t.  

 
Table 6 Ship allocation process 

 

(2) Calculate the standard deviation 
Based on the cost per unit transport volume from the previous 

step, the standard deviations of some ships were calculated for 
each route. The deviation value is an index for judging which ship 
is good for transporting a given cargo type on a certain route. 
Table 6(2) shows a sample calculation of deviation values. 
(3) Ship assignment 

Ship assignment decides which kind of ship to charter 
regularly by considering standard deviation values. Ships with the 
highest standard deviation values are assigned to a shipment on 
the selected route. For example, as shown in Table 6(2), Ship B is 
assigned to Route A2.  
(4) Recalculate the amount of cargo shipment requests 

When a shipment is assigned to a selected route, as shown in 
Step 3, the remaining cargo shipment is calculated by subtracting 
the amount of cargo shipment requested by the shipper. Therefore, 
after assignment, the amount of cargo to ship is updated and Steps 
(1–3) are repeated until all cargo is successfully transported.  

 
 5.  Evaluation of the Proposed Model 

 
5. 1 Confirmation of the Shipper Model 

As shown in Fig. 3, ports were grouped into 4 clusters. We 
confirmed the cluster analysis result based on the following 
points:  
5. 1. 1 Comparison with actual locations 

In this study, the result of cluster analysis was compared with 
actual conditions. The ports in Cluster A match JFE Steel 
Company locations. Moreover, ports in Clusters B and C match 
Nippon Steel Sumikin Company locations. This shipper is divided 
into two clusters because the port constraints in Cluster B and C 
are quite different, as shown in Table 9. Ports of Cluster D match 
other companies (i.e., KOBELCO (Kobe Steel Kakogawa Works), 
Nisshin Steel, etc.).    
5. 1. 2 Comparison with ship operation  

Based on the result in Table 4, most ships operating from 
Australia to Japan loaded cargo from two or more ports in 
Australia, and unloaded at two or more ports in Japan. Here, we 
compare the results of cluster analysis with actual operation. 

Some typical operations are shown in Table 7, where the gray 
represents ports in Australia, and the white represents ports in 
Japan.  

 
Table 7 Characteristics of actual ship operation  

 

Nodes in Hidden Layer 20 
Hidden Layers 40 
Activating Function Max Out Function 
Drop Out Rate 0.01 
L1 Regularization 0.001 
L2 Regularization 0.001 

(1)     Calculate the total cost and cargo volume 

Shipper Route 
Cargo 

Volume 
(t) 

Ship 
A 

Ship 
B 

Ship 
C 

Ship 
D 

($/t) ($/t) ($/t) ($/t) 

A A1 3.5×106 14.8 14.1 16.9 19.9 
A2 2.0×106 14.7 13.9 16.4 19.4 

B B1 4.7×106 13.6 13 15.1 18.3 
B2 6.0×106 13.1 12.6 14.5 18.2 

(2)     Calculate the standard deviation and ship assignment 

Shipper Route 
Cargo 

Volume 
(t) 

Deviation Value 
Ship 

A 
Ship 

B 
Ship 

C 
Ship 

D 

A A1 3.5×106 57.2 60.31 47.9 34.59 
A2 2.0×106 56.64 60.43 45.58 34.35 

B B1 4.7×106 56.81 59.74 49.51 33.92 
B2 6.0×106 56.84 59.12 50.45 33.58 

(3)     Recalculate the amount of cargo shipment request 

Shipper Route 
Cargo 

Volume 
(t) 

Ship 
A 

Ship 
B 

Ship 
C 

Ship 
D 

($/t) ($/t) ($/t) ($/t) 

A A1 3.5×106 14.8 ― 16.9 19.9 
A2 0.6×106 14.7 ― 16.4 19.4 

B B1 4.7×106 13.6 ― 15.1 18.3 
B2 6.0×106 13.1 ― 14.5 18.2 

Ship A  Ship C  
Origin Destination Origin Destination 

Port Walcott Fukuyama Port Walcott Kisarazu 
Fukuyama Mizushima Kisarazu Port Walcott 
Mizushima Port Hedland Port Walcott Kashima 

Port Hedland Mizushima Kashima Port Walcott 
Mizushima Port Hedland Port Walcott Oita 

Port Hedland Chiba Oita Port Walcott 
Chiba Mizushima Port Walcott Kisarazu 

Mizushima Port Hedland Kisarazu Port Walcott 
Port Hedland Chiba Port Walcott Kashima 

Chiba Fukuyama Kashima Port Walcott 
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In the case of Ship A, cargo was loaded at Port Walcott–Port 
Hedland, then unloaded at Mizushima, Chiba, and Fukuyama, 
which matches the operation of Shipper A. In contrast, in the case 
of Ship C, cargo was loaded at Port Walcott, then unloaded at 
Kisarazu, Kashima, and Oita, matching Shipper B.  

As discussed in this section, cluster analysis matched actual 
location and ship operation conditions. 

 
5. 2 Confirmation of the Shipowner model 

In the shipowner model, we estimated the draft rate, average 
service speed, and time in port using deep learning analysis. To 
confirm the effectiveness of the shipowner model, we compared 
the standard deviation of the estimation result of deep learning 
analysis with that of response surface method.  
(1) Comparation using response surface method 

To confirm the draft rate, we used the response surface 
method; like a deep learning analysis method, the following input 
and output were set: 
• Input: ship DWT, length, breadth, depth, draft, service speed, 

horsepower, year built, distance between routes, operator, 
shipyard, maximum draft, arrival limit, departure limit, new 
construction shipbuilding price index, and constraints of 
loading and unloading ports (e.g. Max DWT, max LOA (m), 
max B (m), and max D (m)) 

• Output: draft rate during navigation (loading and unloading), 
etc. 
As shown in Table 8, the average draft rate error using the 

response surface method is 5.9%, higher than the result using 
deep learning analysis.  
(2) Threshold of the estimation 

The draft rate, average service speed and time in port are 
different even when the same ship operates on the same route. In 
this paper, the standard deviation of such a case is set as the 
threshold of the estimation. The threshold is also known in Table 
8. These are calculated by using the actual data of bulk carriers 
which operate between Australia and Japan from 2013 to 2015. 
As shown in Table 8, estimation result using deep learning is 
better than the threshold although that of the response surface 
method is worse. 
 

 Table 8 Average estimate errors 

 
5. 3 Confirmation of the Ship Allocation Model 
5. 3. 1 Problem definition 

To evaluate the reproducibility of the proposed model, we 
simulated ship allocation. Trade condition (i.e. trade volume, 
trade routes, and fuel price), allowable ship specification, number 
of ships, and port constraints were set as inputs.  Then, the result 
of the allocation model was compared with actual ship allocation. 
Moreover, all information for simulating ship allocation was 
extracted from the MLDB. Operation from Australia to Japan in 
2014 was taken as an example.    

 

5. 3. 2 Simulation results 
Fig. 5 showed the ship allocation for each shipper using the 

proposed model. As explained in the previous section, there are 
four Shippers (A–D). The vertical axis shows the number of 
operations (shipments). The horizontal axis shows ship size (in 
103 DWT). Using cluster analysis, the ships are grouped into six 
clusters: 100, 170, 210, 230, 250 and 300 (103 DWT). The actual 
and simulation results are shown together to validate the proposed 
model. 
5. 3. 3 Discussions 

As shown in Fig. 5, the simulation results generally agree 
with actual conditions. In this section, we evaluate the allocation 
process:  

Fig. 5 Comparison of actual and simulation results 
 

(1) Port constraints 
In the MLDB, port constraints were generated in two steps: 

Step 1: Extract the constraints from port information. First, port 
constraints were obtained from port information. However, some 
constraints were unavailable or did not match actual conditions.  
Step 2: Modification using operating data. Port constraints in Step 
1 were compared with actual operations. When the two did not 
match or when some constraints were not available, we modified 
the port constraints using operating ship specifications.  

Some port constraints are shown in Table 9, in which white 
represents data from Step 1 and gray represents data modified 
based on actual operation (Step 2). 
(2) Ship specifications 

By examining the actual operation extracted from the MLDB, 
we identified typical ship specifications for each ship size, which 
are shown in Table 10. 

 

Method Draft Rate Average Service 
Speed 

Time in 
Port 

Deep learning 3.4% 0.2 knots 0.9 days 
Response surface 5.9% - - 

Threshold 3.5% 0.9 knots 1.2 days 
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Table 9 Port constraints 

 
Table 10 Typical ship specifications 

 
(3) Allocation process 

Ship allocation was started from Shipper C, because its port 
constraints were most severe. Hence, B ≤ 43 m and d ≤ 14 m 
became active constraints and ships with 100,000 DWT (B ≤ 43 
m) were selected. Next, ships for Shipper D were allocated where 
B (m) should be less than 45 m. After that, ships for Shipper A 
were allocated because its port constraints were more severe than 
those of Shipper B. Finally, the remaining ships were allocated to 
Shipper B. 

Based on Fig. 5, we see that the simulation results for all 
shippers generally agreed with the actual results. Moreover, as 
shown in Fig. 5, Shipper A mostly used 210,000 DWT ships for 
their operation. Shipper B used various kinds of ships 
(170,000–300,000 DWT). 

Since the simulation of ship allocation matched actual ship 
allocation, and the ship specifications agreed with port constraints, 
we confirmed the effectiveness and reproducibility of the 
proposed models. 

 
6.  Case Studies 

 
Based on the discussion in Section 3.2, we execute the 

following simulations in this section: 
• Examination of supply–demand balance 
• Examination of effective ship size 
• Influence of fuel efficiency on demand 

 
6. 1 Examination of Ship Supply–Demand Balance 
6. 1. 1 Problem definition 

We examine the supply–demand balance of bulk carriers that 
operated between Australia and Japan in 2014 carrying iron ore. 

In contrast with the simulation conducted in Section 5.3, we 
carried out ship simulation without constraints, meaning that there 
was no limit to the number of ships per year of operation. The 
operator shipped cargo shipment with freely selectable ships. In 
this restricted example (using the actual number and ship types 
used in 2014 between Australia and Japan), the simulation result 
is defined as supply. In the unrestricted case, the simulation result 
is defined as demand.  
6. 1. 2 Simulation results 

Figure 6 shows the difference in ship allocation results using 
constraints (supply) and without constraints (demand). These 
results were compared to evaluate ship supply–demand balance 
and determine the kind of ship likely to be in demand in the future. 
The vertical axis is the number of operations (shipments). The 
horizontal axis is the size of the ships (in 103 DWT).  
6. 1. 3 Discussions 

As shown in Fig. 6, without constraints, the allocation of 
210,000, 250,000 and 300,000 DWT ships increased. However, 
the allocation of 170,000 and 230,000 DWT ships decreased. 
Therefore, 170,000 and 230,000 DWT ships were not very 
competitive for shipments between Australia and Japan. 
Meanwhile, there was an insufficient supply of 210,000, 250,000 
and 300,000 DWT ships. Hence, these ships are competitive for 
shipments from Australia to Japan and are expected to be in 
demand in the future. This result can be understood from the port 
constraints shown in Table 9.  

Fig. 6 Supply–demand balance of ships 
 

6. 2 Examination of Ship Allocation by Ship Size 
6. 2. 1 Problem definition 

Based on the discussion in the previous section, 210,000, 
250,000 and 300,000 DWT ships are expected to be in demand. 
Thus, it is necessary to examine the influence of ship size on 
allocation and examine the distribution of ships (210,000, 
250,000 and 300,000 DWT) for which increased demand is 
expected on the selected route (Australia to Japan). In this 
simulation, we accounted for the depreciation value of a new ship 
and ignored the depreciation value of existing ships. The useful 
life of a ship was set to 15 years22), and depreciation value was 
calculated based on reference23). 
6. 2. 2 Simulation results 
The principal particulars of 210,000, 250,000 and 300,000 DWT 
ships are shown in Table 10. Using the proposed method, we 

Shipper Port Name DWT  L 
(m) 

B 
(m) 

d  
(m) 

A 

Fukuyama 220,000 300 50 18 
Chiba 220,000 300 50 18 

Mizushima 260,000 340 50 18 
Kawasaki 220,000 340 50 18 

B 
Kashima 300,000 340 60 19 
Kisarazu 300,000 330 60 19 

Oita 400,000 450 60 25 

C 
Nagoya 110,000 300 43 16 
Tobata 160,000 327 43 16 

Wakayama 160,000 300 43 14 

D 
Higashi-Harima 180,000 330 47 17 

Kure 276,000 360 45 18 
Himeji 257,000 335 47 16 

DWT  L (m) B (m) D (m) d(m) HP 
106,507 255 43 19 13 16,680 
177,855 292 45 25 18 22,920 
210,036 300 50 25 18 21,808 
229,013 320 54 24 18 30,499 
250,813 330 57 25 18 29,789 
297,736 325 55 29 21 30,808 
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examined the principal particulars of the ships. Moreover, by 
conducting this simulation we could identify the number of routes 
and ships that could be allocated for the selected route.  

As shown in Fig. 7, 300,000 DWT ships were in demand on a 
single route. In contrast, 250,000 DWT and 210,000 DWT ships 
can be expected to be in demand on multiple routes. 

 Fig. 7 Ship distribution by size 
 

6. 2. 3 Additional Simulations 
From the simulation result shown in Fig. 7, 250,000 DWT and 

210,000 DWT ships are in demand. To clarify which is preferred, 
we executed an additional simulation in which the fuel efficiency 
of 250,000 DWT and 210,000 DWT ships increased by 10%. The 
results are shown in Fig. 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Ship distribution when fuel efficiency increases by 10% 

 
In Fig. 8, the number of allocated ships and routes for 210,000 

DWT ships increased rapidly (five additional ships and three 
additional routes). However, only two additional ships and one 
additional route were called for in the 250,000 DWT ship 
simulation. Therefore, 210,000 DWT ships have the highest 
potential in iron ore transportation between Australia and Japan. 

This result is affected by the port constraints shown in Tables 
9 and 11. Ship of 210,000 DWT can enter all main ports in 
Australia and Japan and 250,000 DWT ships cannot enter some 
key ports. 

Table 11 Port constraints in Australia 

 
6. 3 Influence of Fuel Efficiency on Demand 
6. 3. 1 Problem definition 

To examine the influence of fuel efficiency on ship demand 
and to draw future development targets, we simulated increasing 
fuel efficiency by 5%, 10%, and 15%. A ship with no fuel 
efficiency change is defined as S0. Ships with fuel efficiency 
increases of 5%, 10%, and 15% are denoted by S1, S2, and S3, 
respectively. The 210,000 DWT ships were simulated as they 
were the most competitive. As in the simulation in Section 6.2, 
we considered depreciation values. To evaluate ship effectiveness, 
we compared the simulation result (ship replacement) with actual 
ship allocation. 
6. 3. 2 Simulation results 

Table 12 shows the simulation result of ship allocation on the 
intended route (Australia to Japan) after modifying the fuel 
efficiency of S0, S1, S2, and S3. The table shows the number of 
allocated routes, operations, and ships. 

 
 Table 12 Replacement 210,000 DWT ships 

 Number of 
Allocated Routes 

Number of 
Operations 

Number of 
Ships 

S0 3 40 5 
S1 4 47 6 
S2 5 64 8 
S3 10 122 16 
 
As shown in Table 12, the number of operations and ships for 

S2 and S3 increased greatly. However, only a small increase 
occurred for S0 and S1. Therefore, we focused on ships S2 and S3.  

The simulation result of increasing fuel efficiency by 10% and 
15% is shown in Fig. 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 Comparison of simulation result by increasing fuel 

efficiency 10% (S2) and 15% (S3) with actual ship allocation 

Port Name DWT  L (m) B (m) d (m) 
Port Hedland  260,000 330 55 19.2 

Dampier 250,000 340 55 19.5 
Port Walcott 340,000 335 60 19.5 
Parker Point 220,000 300 50 18.5 
Esperance 220,000 300 50 18 

Port Name DWT  L (m) B (m) d (m) 
Port Hedland  260,000 330 55 19.2 

Dampier 250,000 340 55 19.5 
Port Walcott 340,000 335 60 19.5 
Parker Point 220,000 300 50 18.5 
Esperance 220,000 300 50 18 
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The vertical axis shows an operation number. The horizontal 
axis shows the ship size.  In Fig. 9, the simulation results of 
ships S2 and S3 are compared with actual ship allocation.  
6. 3. 3 Discussions 

As shown in Fig. 9, when fuel efficiency increases by 10% 
(S2), the replacement by 210,000 DWT ships of 170,000, 210,000, 
230,000 and 250,000 DWT ships has not occurred for Shipper A, 
since the simulation result shows the same number of operations 
compared with actual ship allocation. Hence, Shipper A will not 
buy a new ship. However, in contrast, Shipper B will buy a new 
ship because operation number increased by 64.  

By improving fuel efficiency by 15%, Shippers A and B 
might each buy a new ship, as significant replacement occurred 
for both shippers. For Shipper A, the number of the operation 
increased by 32, and for Shipper B, the number of the operation 
increased by 90. Moreover, as shown in Table 12, the total of the 
operation number is increased from 64 to 122, and the number of 
ships from 8 to 16.  

In summary, using the proposed model, we simulated ship 
supply and demand. Moreover, the principal particulars of the 
ships expected to be in demand were identified. In addition, we 
obtained the impact of fuel efficiency on ship demand.   

 
7.  Conclusions 

 
In this study, we have focused on developing a ship allocation 

model using marine logistics data and its application to demand 
forecasting and basic planning support of bulk carriers, and have 
drawn the following conclusions: 
• A ship allocation model composed of distinct shipper, 

shipowner, and operator models was developed. This model 
was effective in estimating ship supply and demand, the 
influence of ship size and fuel efficiency on ship allocation, 
and the principal particulars of ships for which demand is 
expected to increase.  

• By using the proposed model, we confirmed the 
reproducibility of the ship allocation model. The 
supply–demand balance, effective ship specifications, and 
influence of ship efficiency on demand could be realized 
using the ship allocation model proposed in this study. 

• The ship with the most competitive demand on the selected 
route (Australia to Japan) for iron ore was the 210,000 DWT 
ship. In the future, we plan to automate the ship allocation 
model to simulate worldwide ship allocation for various 
cargos, ship sizes, and ship types. 
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