FAILURE MODE AND EFFECTS ANALYSIS (FMEA) OF DIESEL ENGINE MARITIME TRANSPORTATION FOR SHIP NAVIGATION SYSTEM IMPROVEMENT

DANNY FATURACHMAN

MASTER OF TECHNOLOGY MANAGEMENT (OPERATION MANAGEMENT) UNIVERSITI MALAYSIA PAHANG

FAILURE MODE AND FEVECTS AIRALYSIS (FMEA) OF DESEL ENGINE MARITEME TRAINSPORTATION FOR SHIP NAVIGATION SYSTEM IMPROVEMENT

DANNY FATURACHMAN

Them's submitted in fulfilliment of the requirements for obtaining the degree of Manter of Technology Management (Operation Management)

Faculty of Industrial Management UNIVERSITE MALAYSIA PANANO

SUPERVISOR'S DE CLARATION

I hereby dedure that I have checked the thesis and have strong belief that the thesis is inlegionic in terms of scope and quality for obtaining the degree of Master of Technology Management (Operation Management))

Signature

Position Dute

Name of Supervisor : SHARIMAN EIN MUS * SINIOR LECTURER +1/+7/2014

Shahman En Altara MENOR LECTARER FACULTY OF INCUSTINAL MANAGEMENT UNIVERSITARIA APOLA PAPEARANCE LEILINGHING TUN ANJAR TEL: 09-5470253 TAX: 09-5492167

STUDENTS DECLARATION

I hereby declare that the work in this thesis is my own except for quantation and nummaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for obtaining other degree.

Signature

I

T

đ

Name D NUMBER Dato

DANNY FATURACHMAN 1 MPI 10004. 3/7/2014

睧

DEDICATION

_

- TO MY BELOVED WIFE, ANGGRAINI SETVASARI, AND MY CHILDREN, ANGGIA, AMANDA AND ANDIHKA, MY PARENTS AND ALSO MY PARENTS-IN-LAW*

ACKNOWLEDGE MENT

First and forem are, praise be to Allah the Almighty for His guidence and bleve get in making my dream come true and in completing this thesis access fiely.

twould like to express to my increase granticle and thenkfulnesstomy linck Sharing bin Martafa for his invaluables and contained and support in making this mean of p ible. He has always helped me with his outstanding protectional conduct and I appreciate his contained up p t from the flest I studied here until these concluding moment. I am truly grateful for his program we vision about my meaned, he concluding moment I am truly grateful for his program we vision about my meaned, he concluding of my naive in akes, and his study, his window, expertise and valuable in this have helped me in calling and findmy thesis.

My indexes gratitude as well go to all contents and non staff of the Universiti Malaysia Polyan epositily Faculty of Technology. Centre of Graduer Study/CGS (now become 1PS/ Instatute of Pottga dute Studie), Research & Innovation (P & 1)and Bendereri. They have helped me in many ways and have made me animperial memories when I finished say thesis.

I also shared the credit of my work with my colleagues from the Universiti Malaysia Pahang and also Dorma Persidia University Jakuta, a local This thesis would not have been pesable without their help in providing antistance and a mine information.

Lack to wiedge my sincere indebtedness and maintain to my parents and parents inlaw for their love, dream and vacifice throughout my the Special thatks for my wife and also my children for their specifice, nationed, and understanding that were inevitable to make this its earch possible. I am at loss for words that could properly describe my appreciation for their densition, support and faith or my ability to attain my goals. Special thacks for my big family in Jakarta and also my small family is. Pith and, PPE (Permuted Pelajar Indocents.) UMP for their apport and kind, help to me.

The last but not the least, to those whose natives do not appear here and who have equally contributed to the success fol completion of this thesis, thirds you very truch.

ABSTRACT

indorter in is the world hergest architeleger, 23 of the country is covered by sea However, a lot of ship acidents occur every year ducto many intern and claim a large motor of casualties. Efforts which have been takento improve thesafety of domestic sestimation to fully comply with the SOLAS (Safety of Live at Sea) regulations regarding to the International Machime Organization (IMO) convention, and worsened by varying sea and cargo characteristics, low echanized passengers who are it risk and are very vulnerable to accidents. There are many accidents happened in sea transportation is Indenesia, especially during 2005 until 2010, which mostly are that to human errors and only a few caused by natural and other factors. Most of the section accur due to low an areas on the appreciant accurity and safety. The equiprments and systems on hourd ship will not continuously remains safe or reliable if they are not properly maintained. In this study, history Mode and Effects Analysis (FMEA) approachis, chosen as a risk assessment methodology to synthesize the potential fishere modes and their associated causes for passbuct and system design important. of, especially in the ship dienel engine section. This study pro pass regitar direcking of the fact of system of the ship diesel engine. Fact all system is extremely knownant part on a ship which is designed to supply clean fuel of to main organic, diesel procenting and emotioners dienel generators. PMEA is found to be an effective tool or sechnique to be used for identifying put ble failurerand matigating their effects, in values life cycle obese of diese? engine, FMEA activities are adviat to be properly executed, and detailed FMEA documents produced should be used as priority reference. Design changes can be executed according to the developed PNEA documents, respectably for the most datagerous fisture modes identified with highest difficulty on their provention previbility.

ABSTRAK

Indonesia adalah Keptalauan terbesar di dunia, 2/3 daripada negara diindungi olah hat. Walau bagaimana puri, hunyak kerunlangan kepul berlaku setiap tahun yang disebahkan oleh buryak faktor, dan mulitutkan bilangan mungsa yang besar. Usaha-usaha yang tetah dilakukan untuk meningkatkan keselamatan pengangkatan laut tempatan, sebagai hasil kopuda pematuhan sepertuhnya kepada peraturan-peraturan Keselamatan Kehidupan di Laut (SOLAS) minuted Konversion Organisasi Maritim Antarabangas (IMO) menjadi lebih tende dengan ciri-ciri laut dan kargo yang berbeza-beza, dan penantmang berperafalikant rundah, mereka bernsiko dan sangat terdedah kepada kemalangan. Terdapat bernyak kemalangan di lant pengangkutan di Indonenia, terutamanya pada tahun 2005 hingga 2010 adalah kebanyakan kenan kenalalani mamasia dan hunya segelintir yang disebatikan oleh faktor ulam dan lain-lainnya. Kebunyukan kemalangan yang berlaku disebabkan kesedaran yang rendah tenting supek-topek keselamatan dan keumaran. Pemlatan dan monun di atas kapal, tidak akan kekal selamat anus boleh dipercayai jika in tidak dijaga. Dalam kejian ini, pendekatan mod kegagalan dan analisis kemat (FMEA) dipilih sebagai matodologi penilatan rinko musk mensintesis mod kegegalan yang berpotensi dan sebah-sebah yang berkaitan untuk reka bentuk produk, terutama dalam enjin dieset kapal. Kajian ini men adargkan aistem minyak balam balam dalam enjitt diesel kapal. Stude ini bertujuan untuk melakukan pemelihanum tutin pada sistem minyak pada mjin diesel kapal. Sistem minyak adalah sistem yang sangat penting pada sesebuah kapal yang direka bentuk sanuk membekalian minyak hahan api yang bersih kepada enjin utama, generator diesel dan penjana dienel kecernasan. Mod keengalan dan analisis kesan (FMEA) merupakan alat atau teknik efektif yang digunakim untuk mengenal cani kemungkinan kegagalan dan mengurangkan kenankessonya, Dalam pelbagai fasa kitaran bayat enjin diesel, akuwiti aktiviti FMEA dijalarikan dan dokumen PMEA terperinci biasatva digunakan sehagai rujukan. Reka bentuk perubahan boleh diblogatelen mengikut diskanim FMEA yang sodia tela, terutamanya hogi med kegagalan paling berholasya dengan kesukaran persoephan yang tinggi.

TABLE OF CONTENTS

SUPPLYSOR'S DE CLARA TRON	Ti I
STUDENT'S DE CLARATION	488
DE DICATION	The second se
ACKNOWLE DGE MET CIS	v
ABSTRACT	N
ABSTRAK	vil
TABLE OF CONTENTS	shi
UST OF TABLES	xi
LIST OF FIGURES	1(2)
LIST OF APPE NDICES	-
LIST OF ABBREVIATIONS	307

CHAPTERI INTRODUCTION

l

F

l

1.1	Research background	1
12	Problem Stalen mit	4
1.3	Research Objectives	5
1.4	R search Questions	5
1.5	Soudy Juntification	ő
1.6	Scope and Limitations	7
t.7	Organization of Thesis	7

CHAPTER2 LITERATURE REVIEW

-

21	Introductions	9
2.2	Ship's Accident in Indonesia	
2.3	Churtcheristic of Sea Transportation Accident	
	2.3.1 Regulation and Law about Ship Accident	13
	2.3.2 Causes of the Ship Accident	16
24	Seferty of the Ship	18
	2.4.1 Formal Safety Assessment (FSA) of the Ship	6P
	2.4.2 Hazard Identification	22
	2.4.3 Risk Asseminant	23
	244 Risk Control Options	24
	7.45 Cost-benefit Assessment	25
	2.46 Decision Making	25
2,5	FMEA (Fallure Mode and Effects Analysis)	27
2/0	Oissel Engines	28
2.7	Summary of Chapter	31
CHAPTE R3	METRODOLOGY	
3.1	Intraductions	33
C.M.	3. 11 Type of Sudy	33
	31.2 Date Colection and Source	14
3.2	Ratilina, Criesia for the FMEA	
	3.2.1 Severity Runking Criteria	14
	3.2.2 Environmental, Safety and Health Severity Code	15
	1.2.3 Occurrence Banking Criteria	36
	3.24 Detection Ranking Criteria	14
3.3	FMEA of Diesel Engine	37
	3.3.1 FoxI OI Sotem	12
	4	

h.

	3.3.2 Lubricating Oil System	_38
	33.3 Water Cooling System	39
	3.3.4 Starting Air System	39
3.4	Surtuminy of Chapter	40

9

CHAPTE R4 FINDINGS

ľ

-

41	hok sim Ship Accident Data	42
42	FMEA Analysis	45
43	Next gationSystem Improvement	69

CHAPTERS CONCLUSION AND RECOMMENDATION

51	Frotraw Post Tights	73
5.2	Condusions	73
\$3	Contribution of the Study	74
54	Recommendation for Future Retempts	75

REFERENCES	77
APPE NDIX	83

LIST OF TABLES

21	Characteristic Sen Transportation Accident	13
2.2	Bott white blazard latentified	22
2.3	Frontingen Assignment	21
2.4	Consequence Assertine Di	23
25	Vessel Comparison to and Osciational Phrase	24
26	Standardized Components for FMEA Analysis	27
27	PMEA Chart of Fuel OI Sanchy Systems	30
3.1	Soverity Rankag Criteria	34
3.2	FS & H Severity Lovel Definitions	35
33	Occurtence Ranking Criteria	36
34	Detection Ranking Criteria	36
4.1	Number of Ship Acculate According to Marine Court	-42
	Declision 2005-2010	
4.2	Number of Marine Court Decision by Factor	- 0
	Ship Acodent 2005-2010	
43	Number of Victures According to Marine Court	44
	Decisio 2005-2010	
4.4	Data Spec and Main Figure of K Mikarismo	46
4.5	FMEA Analysia Chart	50
46(a)	FMEA Effects for Main Engine of Feel Oil System	51
46(b)	FMEA Effects for MainFangine of Lukricating Oil System	53
4.6(c)	PMFA Effects for Main Engine of Water Cooling System	.55
46(3)	IMEA Effects for Main Egr of Starting Air System	57
47(n)	FMEA Seventy Class of Fuel CRI System	58
4.7(b)	FMEA Severity Class of Lubringting OI System	61
47(0)	FMEA Severity Class of Water Cooling, System	63
47(0)	IME A Security Class of Starting Air System	65
48	Fuel Oil System Chilles) Effect for M/E	- 56
4.10	Cubricating Oil System Effect for M/E	66
4.00	Water Conting System Effect for MVE	67
4.10	Starting Air System Effect for M/E	67
4.12	Puer our system concern	05
at La	Date Castles Castles Filter	08
4.15	Startion Air Context Dillore	09
4.16	Rack no Criterio Str Fuel Sector	20
A 17	Olal Matrix Engl Contant	70
	The Product Fully System	C1

E

Table No. Tilde

Page

LIST OF FIGURES

Figure Nu.	Title	Page
21	A Simple Model Cause of Accedent Information Flow in FSA Process	17 26
-9.1	Decision 2005-2019	-43
43	Number of Marine Court Decision by Factor Sinp Accident 2005-2010	-44
4,4	Number of Victoms According to Marine Court Decimm 2005-2010 Accidents Factor	-45

۲

l

APPENDIX

Page

83

1.

хŇ

LIST OF ABBREVIATION'S

ľ

ľ

1

ľ

BMKG	Badan Mercorokom, Klimatologi dan Geofisika
CSR	Continuous Service Rating
DEMEA	Design Fullure Mode & Effect Analysis
DNV	Det Norke Veritas
FMEA	: Failure Mode and Effect Analysis
FO	± Fuel Oil
SA.	Formal Safety Assessment
CMDSS	Global Maritime District Safety System
GT	- Grans Tormaget
HAZID	: Hazard Identification
Ю	: Heavy Fuel Oil
4.O	International Labour Organization
MO	International Maritime Organization
ISM	: International Sufety Management
1828	: International Ship and Port Security
nu	- International Telecommunication Uniop
KNKT	: Komite National Keselamatan Transportati
10	a Calerianting Oil
LOA	- Length Over All
LSB-	2 Longth between Perpendicular
IWT	: Light Weight Tonnage
MAB	: Marine Accident Inventigation Branch
MIPC	Marine Environment Protection Committee
MCR	2 Maximum Continuous Rating
MSC	: Marinime Safety Cononillant
NTSC	: National Transportation Safety Committee
OR	: Operational Rating
SAR	: Search And Rescue
SMS	2 Safety Management System
STCW	Standards of Training Certificate and Watch keeping-
SWIFT	: Structured What If Techniques
USCG	: United States Cost Guard
PHLA	Preliminary Hazard Antityas
RCMa	: Risk Control Measures