BABV

KESIMPULAN

Kesimpulan yang dapat diambil setelah mengerjakan tugas akhir ini adalah sebagai berikut
a. Rancangan modulator 8-QAM dibentuk oleh 3 bit masukan dan menghasilkan kombinasi 4 beda Fasa dan 2 level amplitudo berbeda, yang membentuk 8 simbol sinyal
b. Input data biner masukan pada modulator 8-QAM menghasilkan 8 kombinasi yang terbagi menjadi 3 bit simbol yaitu $000,001,010,011,100,101,110,111$ pada setiap 1 perioda gelombang signal pembawa.
c. Modulator 8-QAM yang dirancang dan setelah melalui pengukuran di laboratorium sudah bekerja sesuai dengan apa yang diharapkan di mana sinyal keluarannya menghasilkan 8 titik konstelasi QAM

LAMPIRAN 1
DATA SHEET
MC1496 Balance Modulator

DAFTAR PUSTAKA

1. Roger L. Feeman. 1998. Telecomunications Transmission Hanbook Fourth Edition. New York : John Wiley \& Sons,INC.
2. B.PLathi. 1989. Modern Digital And Analog Communication Systems. Florida. Saunders College Publishing
3. William F. Egan, PH.D. 1998. Phase-Lock Basic. Canada John Wiley \& Sons,INC.
4. Sunariyadi,"Pembutatan Simulator Interaktif Pengiriman Dan Penerimaan Informasi Menggunakan Teknik Moctulasi Digital PSK". PENS-ITS, 2009.
5. Sharawi, Mohammad, Husam Abu-Ajwah, Digital Commumication Tiraining Kir,Electronics Engineering, Princess Sumaya University College for Technology, Jordan, 1999.
6. Indah Susilawati," Simulasi pembangkitan sinyal BPSK dan QPSK", Teknik ElektroUniversitas Mercu Buana Yogyakarta,2009.
7. SN 7495A 4-Bit Parallel Acces Shift Registers (http://www.alldatasheet.com/datasheet-pdf/pdf/27427/Tl/SN7495A html) (01/08/12 07.30 PM)
8. UA741 General Purpose Single Operational Amplifier (http://www.datasheetcatalog.org/datasheet/SGSThomsonMicroelectronics/mXs suwx.pdfi)
(25/07/12 07.30 PM)
9. MC 1496 Balance Modulator
(http://www.datasheetarchive com/balanced $\% 20$ modulator $\% 20 \mathrm{MC} 1496$ datasheet html) (25/07/12 07.30 PM)
10. Teori Modulasi (http///d. wikipedia.org/wiki/Modulasi) (20/07/12 07.30 PM)

AN531/D

MC1496 Balanced Modulator

Prepared by: Roy Hejhall

Applications Engineering

INTRODUCTION

The ON Seniconductor MC1496 monolithic balanced modulator makes an excellent building block for high frequency communications equipment.

The device functions as a broadband, double sideband suppressed carrier balanced modulator without a requirement for transfomers or tuned circuits. In addition to its basic application as a balanced modulator/demodulator. the device offers excellent performance as an $\$ S B$ product detector, AM modulator/detector, FM detector, mixer, frequency doubler, phase detcctor, and more.

The article consists of a general description of the MCl496, its gain equations, biasing infiormation, and circuits illustrating typical applications. It is followed by an appendix containing a detailed mathematical ac and dc analysis of the device.

Many readers may find that one of the circuits described in the article will fill the needs of their application. However, it is impossible to show typical circuits for every possible requirement and the detailed analysis given in the appendix will assist the designer in developing an optimum circuit for any application within the basic capabilities of the MCl496.

ON Somiconductor

http://onsemi.com

APPLICATION NOTE

MC1496 General Description

Figure 1 shows a schematic diagram of the MCl 496 . For purposes of the analysis, the following conventional assumptions have been made for simplification: (1) Devices of similar geometry within a monolithic chip are assumed identical and matched where necessary, and (2) transistor base currents are ignored with respect to the magnitude of collector currents; therefore, collector and emitter currents are assumed equal.

Referring to Figures 1 and 2, the MC 1496 consists of differential amplifier QS Q6 driving a dual differential amplifier composed of transistors Q1, Q2, Q3 and Q4. Transistors Q7 and Q8 and associated bias circuitry form constant current sources for the lower differential amplifier Q5-Q6.

The analysis of optration of the MCl496 is based on the ability of the device to deliver an output which is proportional w the product of the input voltages V_{X} and V_{Y}. This bolds true when the magnitudes of V_{X} and V_{Y} are maintainod within the limits of linear operation of the three diffierential amplifiers in the device. Expressed mathematically, the output voltage (actually output current, which is converted to an cuatput voltage by an extemal load resistance), V_{O} is given by

Figure 1. MC1496 Schematic

Figure 2. Analysis Model
where the constant K may be adjusted by choice of external components. A detailed description of how the MCl496 circuit contiguration perfioms the basic function of multiplication as expressed by Equation (1) is contained in the references.
An example of a four-quadrant multiplier utilizing these principles is the ON Semiconductor MC1595, which has been described in a previous article. ${ }^{4}$ The MC1595 multiplier contains the basic circuil configuration of the MC1496 plus additional circuiry which results in linear multiplier operation over a large input voltage range. However, the less compiex MC1496 has higher frequency response, greater versatility and is less expensive than the MCIS95. For these reasons the MC1496 is preferred in many communications applications such as those to be described later in this note.

Device Operation

The most common mode of operation of the MCl496 consists of appiying a high level input signal to the dual differential amplifiers, Q1, Q2, Q3, and Q4, (carrier input port) and a low level input signal to the lower diffierential amplifier, Q5 and Q6, (modulating signal input port). This results in saturated switching operation of carrier dual differential amplifiers, and linear operation of the modulating diffirential amplifier.

The resulting output signal contains only the sum and difference frequency components and amplitude information of the modulating signal. This is the desired condition for the majority of the applications of the MC1496.
Saturated operation of the carrier-input dual diffierential amplifiers also generates hanmonics (which may be predicted by Fourier analysis, see Appendix). Reducing the carrier input amplitude to its linear range greatly reduces these harmonics in the output signal. However., it has the

AN531/D
disadvantages of reducing device gain and causing the output signal to contain carrier signal amplitude variations.

The carrier input differential amplifiers have no emitter degeneration. Therefore, the carrier input levels for linear and saturated operation are readily calculated. (See Appendix.) The crossover point is in the vicinity of $15-20 \mathrm{mV} \mathrm{ms}$, with linear operation below this level and saturated operation above it.

The modulating signal diffisrential amplifier has its emitters brought out to pins 2 and 3. This permits the designer to select his own value of emitter degeneration resistance and thereby tailor the linear dynamic range of the modulating -signal input port to a particular requirement. The resistor also determines device gain.

The approximate maximum level of modulating signal irput for tinear operation is given by the expression:

$$
\begin{equation*}
V_{\mathrm{m}}(\text { peak })=\mathrm{I}_{1} \mathrm{R}_{\mathrm{E}} \tag{2}
\end{equation*}
$$

where $R_{E}=$ resistance between pins 2 and 3 , and II refers to the notation in the analysis model shown in Figure 2. Since base currents were assumed to be zero and transistors identicai,

$$
\begin{equation*}
11=15 \tag{3}
\end{equation*}
$$

where I 5 = current flowing into pin 5 . Therefore. Equation (2) becomes

$$
\begin{equation*}
V_{y}(\text { peak })=I_{5} R \tag{4}
\end{equation*}
$$

Device voltage gain (single ended output with respect to modulating signal inpur) is given by the expression (also see Appendix):
where

$$
\begin{gather*}
A V=\frac{R_{L}}{R_{E}} f(m) \tag{5}\\
f(m)=\left[\frac{e^{-m}-e^{m}}{\left(1+e^{m}\right)\left(1+e^{-m}\right)}\right] \\
m=\frac{V X}{\frac{k T}{q}}
\end{gather*}
$$

(m) may be approximated for the two general cases of high and low level carrier operation, resulting in the following gain expressions: High level case ($\mathrm{VX}>100 \mathrm{mV}$ peak):

$$
\begin{equation*}
f(m) \approx 1 \tag{6}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
|A v| \approx \frac{R_{L}}{R_{E}} \tag{7}
\end{equation*}
$$

The low-level case ($\mathrm{V}_{\mathrm{X}}<50 \mathrm{mV}$ peak) is given by:

$$
\begin{equation*}
f(m)=\frac{-m}{2} \tag{8}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
|A v|=\frac{R}{2 R_{E}} \tag{9}
\end{equation*}
$$

The foregoing expressions assume the condition $R E \gg r_{e}$, where r_{e} is the dynamic emitter resistance of transistors QS

Abstract

AN531/D

and Q6. When $I_{1}=1 \mathrm{~mA}$, re is approximately 26 ohms at room temperature.
There are numerous applications where it is desirable to set RE equal to some low value or zero. For this condition, Fquations (7) and (9) can be expanded to the more general form:
high level V_{X} :

$$
\begin{equation*}
|A V|=\frac{R_{i}}{R_{E}+2 r_{\theta}} \tag{10}
\end{equation*}
$$

low lever V_{X} :

$$
\begin{equation*}
|A V|=\frac{R_{(m)}}{2\left(R_{E}+2 r_{e}\right)} \tag{11}
\end{equation*}
$$

Equations (10) and (11) summarize the single ended conversion voltage gains of the MCl 496 with a de input voltage (VX) at the cartier por. Operation with a differential output would increase the gains by 6 dB .

Equations (10) and (11) may be combined with Equations (26) and (29) in the Appendix to compute the conversion gain of the MC1496 operating as a double sideband suppressed carrier modulator (ac carrier inpul).

For a bigh level carrier input signal, the expressions for output voltage and voltage gain become
$V_{O}=\frac{R_{L} V_{y}}{R E}+2 r_{e} \sum_{n=1}^{\infty} A_{n}\left[\cos \left(n \omega_{x}+\omega_{y}\right) t+\cos \left(n \omega_{x}-\omega_{y}\right) t\right]$
where

$$
A_{n}=\left[\frac{\sin \frac{n \pi}{2}}{\frac{n \pi}{2}}\right]
$$

Solving Equation (12) for the sidebands around $\mathrm{f}_{\mathrm{X}}(\mathrm{n}=1$) yields:
$V_{O}=\frac{R_{L} V_{y}}{R_{E}+2 r_{\theta}}(0.637)\left[\cos \left(\omega_{x}+\omega_{y}\right) t+\cos \left(\omega_{x}-\omega_{y}\right) t\right]$
(13)

Equation (13) may be further simplified to give the voltage gain for the amplitude of each fundamental sideband:

$$
\begin{equation*}
\frac{V_{Q}}{V_{y}}=A_{V}=\frac{0.637 R_{L}}{R_{E}+2 r_{B}} \tag{14}
\end{equation*}
$$

For the low level VX case:

$$
\begin{gather*}
V_{O}=\frac{-R_{L} V_{y}\left(\cos \left(\omega_{y}\right) t\left[-\frac{V_{r}\left(\cos \omega_{m} x\right.}{n T / 4}\right]\right.}{2\left(R_{E}+2 r_{g}\right)} \tag{15}\\
V_{O}=\frac{-R_{L} V_{y} V_{x}\left[\cos \left(x_{0}+t_{y}\right) t+\cos \left(\omega_{x}-\left(\omega_{y}\right) t\right]\right.}{4\left(\frac{(\hat{4}}{9}\right)\left(R_{E}+2 r_{e}\right)}
\end{gather*}
$$

And the voltage gain for each sideband becomes:

$$
\begin{align*}
& \qquad\left|V_{O}\right|=\left|A_{v}\right|=\frac{R_{L} V_{x}(r m s)}{2 \sqrt{2}\left(\frac{\pi}{4} \frac{T}{J}\right)\left(R_{E}+2 r_{e}\right)} \tag{17}\\
& \text { Equations (14) and (17) summarize the single ended }
\end{align*}
$$ conversion voltage gains of the MCi496 for low and high level ac carrier inputs. Note that these gain expressions are calculated for the output amplitude of each of the two

desired sidebands. The composite output signal consists of the sum of these two sidebands in the low level case and in the high level case it is the sum of the sidebands of the carrier and all the ond numbered harmonies of the carrier.

Laboratory gain measurements have shown good corclation with Equations (10), (11), (14) and (17).

DC Bias

A significant portion of the $D C$ bias circuitry for the MCl496 must be supplied externally. While this has the disadvantage of requiring several external components, it has the advantage of versatility. The MCl 49 may he operated with either single or dual power supplies at practically any supply voltage(s) a semiconductor system has available. Further, the external load and emitter resistors provide the designer with complete fireedom in setting device gain.

The DC bias design procedure consists of setting bias currents and 4 bias voltage levels, which not exceeding absolute maximum voltage, current, and dissipation ratings.
The current levels in the MC1496 are set by controlling Is (subscripts refer to pin numbers). For bias current design the following assumption may be made:

$$
15=16=112=\frac{114}{3}
$$

Since base currents may be neglected, Is flows through a forward biased diode and a 500Ω resistor to pin 14 .

When pin 14 is grounded. Is is most convenientiy adjusted by ctriving pin 5 from a current source.

When pin 14 is connected to a negative supply, I 5 may be set by connecting a resistor from pin $\$$ of ground (R5). The value of $R 5$ may be computed fionn the following expression:

$$
\begin{equation*}
R_{5}=\frac{\left|V_{1}\right| \Phi}{15}-500 \Omega \tag{18}
\end{equation*}
$$

where $\phi=$ the diode forward voltage, or about 0.75 Vdc at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

The absolute maximum rating for is is 10 mA .
For all applications described in the aricle, bias current I5 has been set at 1 mA . The MC 1496 has been characterized at this bias current and it is the recommended current unless there is a contlict with power dissipation requirements.

The 4 bias votage levels that must be sct up externally are: pins 6 and 12 most posilive;
pins 8 and 10 next most positive;
pins 1 and 4 next most positive;
pin 14 most negative.
The intermediate voltage levels may be provided by a voltage divider(s) or any other convenient source such as ground in a dual power supply system.
It is recommended that the voltage divider be designed for a mimimum current of 1 mA . Then 11. 14. 17, and Is need not be considered in the divider design as they are transistor base currents.

Guidelines for setting up the bias woltage levels include maintaining at least 2 volts collector base bias on all

Figure 4. Balanced Modulator Carrier Suppression versus Frequency

Figure 5. Balanced Modulator Suppression of Carrier Harmonic Sidebands versus Carrier Frequency

Figure 6. Batanced Modulator Sideband Output versus Cartier and Modulating Signal Inputs. Single Ended Operation.

Table 1. Suppression in dB of Spurious Outputs Below Each Desired Sideband (fic \pm Is) for High and Low Level Carrier Injection Voltages

	fC	2 C	3 C	$2 \mathrm{C} \pm \mathbf{f}$	${ }^{3 \mathrm{f}} \mathrm{C} \pm \mathrm{s}$
High Level Carrier Input 60 mV(mns)	66 dB	35 dB	70 dB	43 dB	19 dB
Low Level Carier Input $10 \mathrm{mV}(\mathrm{mms})$	66 dB	45 dB	70 dB	53 dB	46 dB

Carrier Frequency $=500 \mathrm{kHz}$
Modulating Signal $=1.0 \mathrm{kHz}$ \& $300 \mathrm{mV}(\mathrm{ms})$.
Circuit of Figure 3.
Spurious levels during low level operation are so low that they are affected significantly by the special purity of the carrier input signal. For example, initial readings for Tiable I were taken with a carrier signal generator which has second and third harmonics 42 and 45 dB below the fiundamental, respectively. Additional filtering of the carrier input signal was required to measure the true second and third carrier-harmonic suppression of the MC1496.

The decision to operate with a low or high level carrier input would of course depend on the application. For a typical filter-type SSB generator, the filter would remove all spurious ouputs except sone spurious sidebands of the carrier. For this reason operation with a high tevel carrier would probably be selected to maximize gain and insure that the desired sideband does not contain any spurious amplitude variations present on the carrier input signal.

On the other hand, in a low frequency broadband balanced modulator spurious outputs at any frequency may be undesirable and low level carrier operation may be the best choice.

Good carrier suppression over a wide temperature range requires low de resistances between the bases of the lower diffierential amplifier (pins 1 and 4) and ground. It is recommended that the values of these resistors not be increased significantly higher than the 51 ohms utilized in the circuit shown in Figure 3 in applications where carrier suppression is important over full operating temperature ringe of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Where operation is to be over a limited temperature range, resistance values of $u p$ to the low kilohm range may be used.

Amplitude Modulator

The MC1496 balanced modulator circuil shown in Figure 3 will function as an amplitude modulator with just one minor modification. All that is necessary is to unbalance the carrier null to insert the proper amount of carrier into the output signal. However, the null circuitry used for balanced modulator operation does not provide sufficient adjustment range and must be modified. The resulting amplitude modulator is shown in Figure 7. This modulator will provide excellent modulation at any percentage from zero to greater than 100 percent.

Figure 7. Amplitude Modulator

Figure 8. Product Detector +12 Voc Single Supply

Figure 9. Double Balanced Mixer, Broadband Inputs, 9 MHz Tuned Output

AN531/D

Product Detector

Figure 8 shows the MC1496 in an $\mathbf{S S I} 3$ product detector configuration. For this application, all firequencies except the desired demodulated audio are in the RF spectrum and can be easily filtered in the output. As a result, the carrier null adjusament need not be included.
Upper diffigential amplifiers Q1 Q2 and Q3-Q4 are again driven with a high level signal. Since carrier output level is not important in this application (carrier is filtered in the output) carrier input level is not critical. A bigh level carrier input is desirable to maximize gain of the detector and to remove any carrier amplitude variations from the output. The circuit of Figure 8 performs well with a carrier input level of 100 to 500 mV rms.
The modulated signal (single-sideband, suppressed carrier) input level to differential amplifie r pair QS Q6 is maintained within the limits of linear operation. Excellent linearity and undistonted audio output may be achieved with an SSB input signal level range up to 100 mV rms. Again, no transformers or tuned circuits are required for excellent product detector perfiormance firom very low frequencies up to 100 MHz .
Another advantage of the $\mathrm{MC} 14 \%$ product detector is its high sensitivity. The sensitivity of the product detector shown in Figure 8 for a 9 MHz SSB signal input and a 10 dB signal plus noise to noise $[(\mathrm{S}+\mathrm{N} / \mathrm{N}]$ ratio at the output is 3 microvolts. For a $20 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) \mathrm{N}$ ratio audio outpur signal it is 9 microvolts.
For a $20 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ ratio, demodulated andio output signal, a 9 MHz SSB input signal power of 101 dBm is required. As a result, when operated with an SSB receiver with a 50 ohm input impedance, a 0.5 microvolt RF input signal would require only 12 dB overall power gain from antenna input terminals to the MCl 496 product detector.
Note also that dual outputs are available from the product detector, one from pin 6 and another from pin 12. One output can drive the receiver audio amplifiers while a separate output is available for the AGC system.

AM Detector

The product detector circuit of Figure 8 may also be used as an AM detector. The modulated signal is applied to the upper differential amplifiers while the carrier signal is applied to the lower diffierential amplifier.

Ideally, a constant amplitude carrier signal would be obtained by passing the modulated signal through a limiter ahead of the MC1496 carrier input terminals. However, if the upper input signal is at a high enough level ($>50 \mathrm{mV}$), its amplitude variations do not appear in the oulput signal. For this reason it is possible to use the product detector circuit shown in Figure 8 is an AM detector simply by applying the modulated signal to both inputs at a level of about 600 mV on modulation peaks without using a limiter ahcad of the carrier input port. A small amount of distortion will be generated as the signal falls below 50 mV during modulation valleys, but it will probably mot be significant in most applications. Advantages of the MC1496 AM detector
include linear operation and the ability to have a detector stage with gain.

Mixer

Since the MC1496 generates an output signal consisting of the sum and difference frequencies of the two input signals only, it can also be used as a double balanced mixer.

Figure 9 shows the MC 1496 used as a high frequency mixer with a broadband input and a tuned output at 9 MHz . The 3 dB bandwidth of the 9 MHz output tank is 450 kHz .

The local oscillator (LO) signal is injected at the upper input port with a level of 100 mV mm . The modulated signal is injected at the lower input port with a maximum tevel of about 15 mV mis. Note that for maximum conversion gain and sensitivity the external emiter resistance on the lower differential amplifier pair has been reduced to zero.
For a 30 MHz input signal and a $39 \mathrm{MH} \angle \mathrm{LO}$, the mixer has a conversion gain of 13 dB and an inpul signal sensitivity of 7.5 microvolts for a $10 d B(S+N y N$ ratio in the 9 MHz output signal. With a signal input level of 20 mV , the highest spurious output signal was at $78 \mathrm{MHz}\left(2 \varepsilon_{\mathrm{LO}}\right)$ and it was more than 30 dB below the desired 9 MHz output. All other spurious outputs were more than 50 dB down.
As the input is broadband, the mixer may be operated at any HF and VHF input frequencies. The same circuit was operated with a 200 MHz input signal and a 209 MHz LO. At this frequency the circuit had 9 dB conversion gain and a 14 microvolt sensitivity.

Greater conversion gains can be achieved by using tuned cireuits with impedance matching on the signal input port. Since the input impedance of the lower input port is considerably higher than 50 ohms even with zero emitter resistance, most of the signal input power in the broadband configuration shown is being dissipated in the 50 ohm resistor at the input port.
The circuit shown has the advantage of a broadband input with simplicity and reasonable conversion gain. If greater conversion gain is desired, impedance matching at the signal input is recommended.
The input impedance at the signal input port is ploted in Figures 10 and 11. The output impedance is also shown in Figure 12. Both of these curves indicate the complex impedance versus firequency for single ended operation.
The nulling circuit permits nulling of the LO signal and results in a few dB additional LO suppression in the mixer output. The nuling circuitry the two $10 \mathrm{k} \Omega$ resistors and $50 \mathrm{k} \Omega 2$ potentiometer) may be eliminated when operating with a cuned output in many applications where the combination of inherent device balance and the output tank provide sufficient LO suppression.
The uned ouput tank may be replaced with a resistive load to firm a broadband input and output doubly balanced mixer. Magnitude of output load resistance becomes a simple matter of tradeoff between conversion gain and output signal bandwidth. As shown in Figure 12, the single ended output capacitance of the MCl 496 at 9 MHz is typically 5 pF .

Figure 10. Signal-Port Parallel-Equivalent Input Resistance versus Frequency

Figure 11. Signal-Port Parallel-Equivalent Input Capacitance versus Frequency

Figure 12. Single-Ended Output Impedance versus Frequency

With a 50 ohn output load, a 30 MHz input signal level of 20 mV , and 39 MHz LO signal level of 100 mV the conversion gain was -8.4 dB (loss). Isolation was 30 dB from input signal port to output port and 18 dB from LO signal port to output port.

Doubler

The MC1496 functions as a frequency doubler when the same signal is injected in both input ports. Since the output signal contains only $\omega_{1} \pm \omega_{2}$ frequency components, there will be only a single output frequency at $2 \omega_{1}$ when $\omega_{1}=\omega_{2}$.
For operation as a broadband low firequency doubler, the balanced modulator circuit of Figure 3 need be modified only by adding accoupling between the two input ports and reducing the lower differential amplifier emitter resistance between pins 2 and 3 to zero (tieing in 2 to pin 3). The latuer modification increases the circuit sensitivity and doubler gain.

A low frequency doubler with these modifications is shown in Figure 13. This circuit will double in the audio and low frequency range below 1 MHz with ail spurious sutputs greater than 30 dil below the desired 2 fN output signal.

For optimum output signal spectral purity, both upper and lower differencial amplifiers should be operated within their linear ranges. This corresponds to a maximum input signal level of 15 mV rms for the circuit shown in Figure 13.
If greater signal handling capability is desired the circuit may be modified by using a 1000 ohm resistance between pins 2 and 3 and a 10:1 voltage divider to reduce the input signal at the upper port to $1 / 10$ the signal level at the lower port.

The MCl 496 will also function very well as an RF doubler al frequencies up to and including UHF. Fither a broadband or a tuned output configuration may be used.
Suppression of sparricus cotputs is not as good an VHF and UHF. However, in the broadband configuration, the desired doubled output is still the highest magnitude output signal when doubling from 200 to 400 MHz , where the spurious outputs are 7 dB or more below the 400 MHz output. Even at this frequency the MCl 49 is still superior (t) a conventional transistor doubler before output filtering.

Figure 14 shows a 150 to 300 MHz doubler with output filtering. All spurious outputs are 20 dB or more below the desired 300 MHz output.

Figure 14. $\mathbf{1 5 0} \mathbf{- 3 0 0} \mathbf{~ M H z}$ Doubler

FM Detector and Phase Detector

The MCl496 provides a de output which is a function of the phase diffierence between two input signals of the same frequency, and can therefore be used as a phase detcctor. This characteristic can also be utilized to design an FM detcctor with the MCl496. All that is required is to provide a means by which the phase difference between the signals at the two input ports vary with the firequency of the FM signal.

Phase dependent FM detector operation can be explained by considering input and oulput currents for a high level signal at boh inpul ports. These waveforms are shown in Figure is with inputs in phase at A and out of phase at B .

Since the output current is a constant times the product of the input currents, Figure 15 illustrates how a shift in phase between the two input sig nals causes a do level shift in the output.

Figure 45. Phase Detector Waveforms, High Level Inputs

AN531/D

Summary

A number of applications of the MC1496 monolithic balanced modulator integrated circuit have been explored. The basic device characteristics of providing an output signal an the sum and difference of the two input frequencies with options on gain and amplitude characteristics will undoubtedly lead to numerous other applications not discussed in this article.

References

1. Gilbert, Barrie, "A DC- 500 MHz Amplifier/ Multiplier Principle," paper delivered at the International Solid State Circuits Conference, February 16, 1968.
2. Gilbert, Barric, "A Precise Four Quadrant Multiplier with Subnanosecond Response," IEEE Journal of Solid-State Circuits, Viol. SC-3, No. 4, December 1968.
3. Bilotit, Alberto, "Applications of a Monolithic Analog Multiplier," IEEE Journal of Solid-State Circuits, Vol. SC--3, No. 4, December 1968.
4. Renschler, E., "Theory and Application of a Linear Four-Quadrant Monolithic Multiplier," EEE Magazine, Vid. 17, No. 5, May 1969.
5."Analysis and Basic Operation of the MC1595," ON Semiconductor, Application Note AN489.

APPENDIX

AC and DC Analysis

With refierence in Figure 2 of the text, the following equations apply:

$$
y=\frac{V_{y}}{R E} \quad \begin{aligned}
& \text { (when } R E \gg r e ~ t h e ~ t r a n s i s t o r ~ \\
& \text { dynamic emituer resistance.) }
\end{aligned}
$$

(1A)
$12=\frac{1_{1}+l_{y}}{1+\theta \frac{y_{z}}{z}}$,
$L_{4}=\frac{I_{1}-I_{Y}}{1+\theta \frac{-V_{X}}{B}}$,

$$
\left.\begin{array}{l}
I_{3}=\frac{l_{1}+y_{1}}{1+\theta \frac{-y_{m}}{2}} \\
I_{5}=\frac{I_{1}-I_{y}}{1+\theta \frac{v_{y}}{2}}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{c}
a=\frac{k T}{q} \\
I_{A}=I_{2}+1_{4}=\frac{I_{1}+l_{y}}{1+\theta^{m}}+\frac{1_{1}-I_{y}}{1+\infty-m} \\
I_{B}=1_{3}+I_{5}=\frac{l_{1}+I_{y}}{1+8 \frac{l_{1}-l_{y}}{1+e^{m}}}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& m=\frac{V_{x}}{a} \\
& A A-18=(11+1 y)\left[\frac{1}{1+e^{m}}-\frac{1}{1+\theta^{-m}}\right] \\
& +\left(l_{1}-l_{y}\right)\left[\frac{1}{1+\theta^{-m}}-\frac{1}{1+e^{m}}\right] \\
& =(1+1 \cdot)\left[\frac{\left.1+\frac{e}{1}-\frac{m}{e^{m}}\right)\left(1+\frac{1}{-}=\frac{e m}{-m}\right)}{}\right] \\
& +\left(l_{1}-\phi\left[\left[\frac{1+e^{m}}{1+\theta^{-m}}=\frac{1}{(}=\frac{e}{1} \frac{-m}{\theta^{m}}\right)\right]\right. \\
& =\frac{\left(l_{1}+l_{y}\right)\left(e^{-m}-e^{m}\right)+\left(l_{1}-l_{y}\right)\left(e^{m}-e^{-m}\right)}{\left(1+e^{m}\right)\left(1+e^{-m}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left.21 y^{(} e^{-m}-e^{m}\right)}{\left(1+e^{m m}\right)\left(1+e^{-m}\right)} \\
& \Delta V_{O}=\left(I_{A}-I_{B}\right) R_{L} \\
& =\frac{2 l_{y}}{(1} \frac{R_{L}\left(e^{-m}-e^{m}\right)}{\left(e^{m}\right)\left(1+e^{-m}\right)} \\
& l_{y}=\frac{V_{\text {in }}}{R_{E}} \\
& \text { Therefore, }
\end{aligned}
$$

$$
\begin{equation*}
\frac{\Delta}{V_{\mathrm{in}}}=\frac{2 R_{\perp}}{R_{E}}\left[\frac{\theta-m-\theta m}{\left(1+\theta^{m}\right)\left(1+\theta^{-m}\right)}\right] \tag{8A}
\end{equation*}
$$

recalting that

$$
m=\frac{V}{a}=\frac{V_{x}}{\frac{k I T}{a}}
$$

From this it can be seen that voltage gain is a function of the input level supplied to the upper four transistors:

$$
\begin{equation*}
\left.\frac{\Delta V_{Q}}{V_{i n}}=A V=\frac{2 R_{L}}{R E}[4 m)\right] \tag{9A}
\end{equation*}
$$

(4A) and

$$
\begin{equation*}
V_{0}=\frac{2 R_{L} V_{Y}}{R_{E}}[f(\mathrm{~m})] \tag{10~A}
\end{equation*}
$$

A curve of $f(\mathrm{~m})$ versus input level supplied to the upper quad differential amplifier is shown in Figure if of the text.

Figure 16. \mathbf{V}_{X} versus (fm)
The MCl496 is therefore a linear multiplier over the range of V_{x} for which [$f(\mathrm{~m})$] is a linear function of V_{x}. This range of x can be obtained by inspection of Figure 16 and is approximately zero to 50 millivolts.

Examining the case of a small signal V_{x} input levet mathematically yields:

Assume

$$
\begin{equation*}
V_{x}<a \tag{11A}
\end{equation*}
$$

Then:

$$
\begin{gather*}
e^{m} \leq 0.1 \tag{12A}\\
e^{m}=1+m \tag{13A}\\
e^{-m}=1-m \\
{[f(m)]=\left[\frac{(1-m)-(1+m)}{(2+m)(2-m)}\right]=\left(\frac{-2}{4}-\frac{m}{m^{2}}\right)} \tag{14A}\\
\left(\frac{-}{\left.4-\frac{2 m}{-m}\right)}\right)=-\frac{2}{4} \frac{m}{2}=\frac{-m}{2} \tag{15A}
\end{gather*}
$$

Therefore

$$
\begin{gather*}
\left.A V=\frac{V_{0}}{V_{y}}=\frac{2}{R_{E}}\left(\frac{R_{L}}{2}\right)\right)=\frac{-m)}{R_{E}} m \\
V_{0}=\frac{-R_{L} V_{y m}}{R_{E}}=\frac{-R_{L} V_{y} V_{x}}{R_{E} a} \tag{17A}
\end{gather*}
$$

Eguation (17 A) shows that the MCl 496 is a inear multiplier when $\mathrm{V}_{\mathrm{x}} \leq 2.6 \mathrm{mV}$. However, as was observed by inspection of Figure 16 earlier, the device is capable of approximate linear multiplier opcration when $V_{x} \leq 50 \mathrm{mV}$.

For the case of a large signal V_{x} input level:

$$
\begin{aligned}
& V_{x}>a \\
& \theta^{m}>1 \\
& \theta^{-m} \leqslant 1
\end{aligned}
$$

$$
\begin{gather*}
A V=\frac{2}{R_{E}}\left[\frac{R_{1}}{e^{m}}\right]=\frac{-2 R_{L}}{R_{E}} \tag{20~A}\\
V_{0}=\frac{-2 R_{L} V_{Y}}{R_{E}} \tag{21A}
\end{gather*}
$$

Equation (20A) indicates that in this mode the output level is independent of the level of V_{X}. This characteristic is usefiul in many communications applications of the MC1496.

Mathematical analysis for ac input signals is given below for two modes ofioperation which cover most applications of the MCl496. These modes are (1) V_{x} and V_{y} both low level sine waves, and (2) low level sine wave for V_{y} and a large signal inpul for V_{x} (either a high leveli sine wave or a square wave input) giving rise to a symmetrical switching operation of the upper differential amplifier quad. $Q 1, Q^{2}$, Q3, and Q4.

For sine wave input signals,

$$
\begin{align*}
& V_{x}=E_{x} \cos \omega_{x} t \tag{22A}\\
& V_{y}=E_{y} \cos \omega_{y} t \tag{23A}
\end{align*}
$$

where E_{x} and E_{y} are the peak values of the x and y input voltages, respectively. Therefore,

$$
\begin{equation*}
V_{0}=K E_{x} E_{y}\left(\cos \omega_{x} t\right)\left(\cos \omega_{y} t\right) \tag{24A}
\end{equation*}
$$

Performing this multiplication yields:

$$
\begin{equation*}
v_{0}=\frac{K E_{x} E_{y}}{2} \cos \left(\omega_{x}+\omega_{y}\right) t+\cos \left(\omega_{x}-\omega_{y}\right) t \tag{25A}
\end{equation*}
$$

The second mode of operation can be analyzed by assuming square wave switching fiunction in the upper diffierential amplifiers and applying Fourier analysis.

Figure 17. Input and Output Waveforms for a High Level Upper Input and Low Level Input Signals

AN531/D

The Fourier series form for the symmetrical square wave signal shown in Figure 17 is:

$$
\begin{equation*}
s(t)=2 \sum_{n=1}^{\infty} A_{n} \cos n \omega_{x} t \tag{26A}
\end{equation*}
$$

where the Fourier coefficients are

$$
A_{n}=\left[\frac{\sin \frac{\pi n}{2}}{\frac{\pi n}{2}}\right]
$$

The output voltage is therefore:
$V_{0}=K E y \sum_{n=1}^{n} A_{n}\left[\cos \left(n \omega_{x}+\omega_{y}\right) t+\cos \left(n \omega \omega_{x}-\omega_{y}\right) \mid t\right]$
(28A)

Note that Equation (25A) predicts that for low level input signals, the output signal consists of the sum and diffierence frequencies ($\omega_{\mathrm{x}} \pm \omega_{\mathrm{y}}$) only, while Equation (28A) predicts that operation with a high level input for V_{X} input will yield outputs at frequencies $\omega_{x} \pm \omega_{y}, 3 \omega_{x} \pm \omega_{y}, 5 \omega_{x} \pm \omega_{y}$, etc.

ON Semiconductor and are trademarks of Semiconductor Componenis Industries, LLC (SCILLC). SCLLLC reserves the right ho make changes without further notop to ary products herein, SCILLC makes no warranty, representation or guarantee regarding the sutability of tis products for any particular purpose, nor does SCILLC assume any lability arising out of the applicalion or use of any product or circuit, and specificality discialms any and all liebilty, inciuong without limitation special, consequential or incidentai damages. "Typical" parameters which may be provided in SCILLC data sheets andlor specaficallons can and do vary n dimprent applicalions and actuat performance may vary over trme. All operaling parameters, meluding "Typicals"must be valldated for each customer application by custormer's lechicel experts. SCLLC does not convey any license under ts patent nights nor ine rights of others. SCLLC products are not designipd, intended, or authonzed for use as components in systams infended for surgical implant into the body. or ottier applcatrons infended b supporl or sustain life, or for any other apphcation in which the failure of the SCiLL product could create a st uakn where personal and hold
 SCILLC and is officers, empioyees, subsidiafies. amiliates, and distributors harmiess against ail clams, cosis, damages, and expenses, and reaschain atleges that SCILLC was negligent regarding the design of manufacture of the part. SClLLC is an Equal Opportunly/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

LHerature Fulfiliment:

Liferature Distrbution Center for ON Semiconductor
P.O. Box 5163 , Denver. Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Tiol Free USACanada
Fax: 303-675-2176 of 800-344-3867 Toll Free USACanada
Email: ONitghibbertcocom
N. Amerken Technical Support: 800-282-9855 Tol Free USACenada

JAPAN: ON Semiconducter, Japan Custemer Focus Center
4-32-1Nrghi-Gotanda, Stinugawa-ku, Fiatyo, dapan 141-0031
Phone: 81-3-5740-2700
Emait: r14525@onsemi.com
ON Semiconductor Websle: htp://onsemicom
For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com
Datasheets for electronics components.

LAMPIRAN 2

DATA SHEET
UA741 General Purpose Single Operational Amplifier

57
 UA741
 GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGHGAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION
- REQUIRED
- SAME PIN CONFIGURATION AS THE UA709

DESCRIPTION

The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intented for a wide range of analog applications.

- Summing amplifier
- Voltage folliower
- integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network (6 dB / octave) insures stability in closed loop circuits.

ORDER CODE

Part Number	Temperature Range	Package	
		N	D
UA741C	$0^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	\bullet	\bullet
UA741I	$-40^{\circ} \mathrm{C}+105^{\circ} \mathrm{C}$	\bullet	\bullet
UA741M	$-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$	\bullet	\bullet
Example : UA741CN			

$\mathrm{N}=$ Quai in Line Package (DiP) - also available in Tape \& Reer (DT)

PIN CONNECTIONS (top view)

November 2001

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA741M	UA7411	UA741C	Unit
V_{CC}	Supply voltage	± 22			\checkmark
V_{10}	Differential knput Voltage	± 30			\checkmark
V_{i}	Input Voltage	± 15			\checkmark
Ptot	Power Dissipation 1)	500			mW
	Output Short-circuit Duration	Infinite			
$\mathrm{T}_{\text {pper }}$	Operating Free-air Tiemperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Tiemperature Range	-65 bo +150			${ }^{\circ} \mathrm{C}$

1. Power dissipation must be cons/dered to ensure maximum junction tempereture (T) (if nox exceeded.

ELECTRICAL CHARACTERISTICS
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{10}	Input Offset Voltage ($\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega$) $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$		1	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	mV
110	input Offset Current $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$		2	$\begin{aligned} & 30 \\ & 70 \end{aligned}$	nA
lb	Input Bias Current $\begin{aligned} & T_{\text {emb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {mun }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$		10	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA
A vd	Large Signal Voltage Gain ($\mathrm{V}_{0}= \pm 10 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$) $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		V/mV
SVR	Supply Voltage Rejection Ratio ($\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \leqslant 2$) $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$	$\begin{aligned} & 77 \\ & 77 \end{aligned}$	90		dB
${ }^{1} \mathrm{Cc}$	Supply Current, no load $\begin{aligned} & T_{\text {anb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$		1.7	$\begin{aligned} & 2.8 \\ & 3.3 \end{aligned}$	mA
$V_{\text {cm }}$	input Common Móe Voltage Range $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \end{aligned}$			V
CMR	Common Mode Rejection Ratio ($\mathrm{R}_{\mathbf{S}} \leq 10 \mathrm{kS} 2$) $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	90		dB
los	Output short Circuit Current	10	25	40	mA
$\pm \mathrm{V}_{\text {opp }}$	Output Voltage Swing $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$ $\begin{aligned} & R_{L}=10 \mathrm{k} \Omega 2 \\ & R_{L}=2 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$		V
SR	Slew Rate $V_{i}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \text {, unity Gain }$	0.25	0.5		$\mathrm{V} / \mathrm{\mu s}$
t	Rise Time $V_{1}= \pm 20 \mathrm{mV}, R_{L}=2 \mathrm{ks}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \text {, unity Gain }$		0.3		$\mu \mathrm{s}$
$K_{\text {OV }}$	Overshoot $V_{1}=20 \mathrm{mV}, R_{L}=2 \mathrm{ks}, C_{L}=100 \mathrm{pF}$. unity Gain		5		\%
R_{1}	input Resistance	0.3	2		M Ω
GBP	$\begin{aligned} & \text { Gain Bandwith Prodtect } \\ & V_{L}=10 \mathrm{mV} . R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	0.7	1		MHz
THD	Total Harmonic Distortion $f=1 \mathrm{kHz}, A_{V}=20 \mathrm{~dB}, R_{\mathrm{L}}=2 \mathrm{k} \Omega, V_{0}=2 \mathrm{~V}_{\mathrm{pp}}, C_{\mathrm{L}}=100 \mathrm{pF}, T_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		0.06		\%
θ_{n}	Equivalent Input Noise Voltage $f=4 \mathrm{kHz}, \mathrm{R}_{\mathrm{s}}=100 \mathrm{~s} 2$		23		$\frac{n v}{\sqrt{H z}}$
Dm	Phase Margin		50		Degrees

UA 741

PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP

Dim.	Millimeters			Inchat		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		3.32			0.131	
a 1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.042
D			10.92			0.430
E	7.95		9.75	0.373		0.384
e		2.54			0.100	
63		7.62			0.300	
64		7.62			0300	
F			6.6	*		0260
1			5.08			0.200
L	3.98		3.81	0.125		0.450
Z			1.52			0.060

PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Mililimetors			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.99		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1	45° (typ.)					
-	4.8	C	50	0.189		0.997
E	5.8		6.2	0.228		0.244
-		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.950		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S	8° (max.)					

Information furnithed in belioved to be accurab and reliable. However, STMicroelectronice aseumee no reeponeibility for une coneequences of use of such informetion nor for any infringement of patents or other riphte of thind partiee which muy reault from Its use. No Ilcense if granted by Implication or otherwbe under any patent or patent rights of STMicroploctronics. Specificatlone montioned in this publication ary subject to change without notice. This pubilcation supersedep and raplaces all information provioudy supplted. STMicroelectronles producte are not authorized for uee ate critical components in life aupport devicas or syetems without exprets. written approval of STMicroelectronics.

OThe ST logo in aregistered trademark of STMicroelectronice
©2001 STMicrosiectronics - Printed in haly . All Rights Reserved
STMicrowiectronice GROUP OF COMPANIES
Australia - Brazil-Canada - China - Finkand - France - Germany - Hong Kong - India - Israet - Maly - Japan - Malaysia
Malk - Morocco-Singapore - Spain - Sweden - Switzeriand - United Kingdom - United Slales

- hitp:/hww. atcom

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

LAMPIRAN 3 DATA SHEET

4-Bit Paralel - Access Shift Register

SN5495A, SN54L S95B
SN7495A, SN74L.S95B
schematics of inputs and outputs

absolute maximum ratings over operating free-air tempersture renge (untess otherwise noted)

	SN54.	SM5448.	SN74	\$M744S	UNIT
Supply vottage. VCC [see Note if	7	7	7	7	\checkmark
input volinge	6.5	J	5.5	J	v
interemirter vottege (see Note 23	55		55		v
Operating tree air temperaturo ranpe	-5510 125		01070		${ }^{4} \mathrm{C}$
Storge temnersture iange	. 65 to 150		-65 ti50		${ }^{\circ} \mathrm{C}$

 the muge contral innup of tho 35 A

IMPORTANT NOTICE

Texas Instruments and its suthsidianes (Ti) reserve the right to make changes to their products or to discontinuet any product or service without notice, and advise customers to obtan the latest version of relevant information to venty, before placing orders, that information being relled on is current and complete. Ald products are sold subject bo the terms and conditons of saie supphed at the time of order acknowledgement, including those pertaining to warfanty, petent infringernent. and limutation of thability.

TI warrants pertommance of is semiconductor products to the specifications applicalsle at the time of sate in accordance with Tis standard wartanty. Te stng anct other quaity conlrol techniques are utilized to the extent Tifeems necessary support this warranty. Specfic testing of alt parameters of each device is not necessarty performed, except those mandated by govemment requirements.

CERTAIN APPLICATIONS USING SEMHCONDUCTOR PRODUCTS MAY INVOLVE POTENTAAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTIAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED. AUTHORILED. OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER S RISK.

In order to minimize nsks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to mrtmize inherent or procedural hazards.

Tl assumes no liabilly for appleations assistance or customer producl design. 71 does not warrant or represent that any license, ether express or implied, is granted under any patent right, copyright, nask work right, or other intellectual property right of $T 1$ oovering or relating to any combinetion, machine, of process in which such semiconductor products or services might be or are used. Tis putivichton of information regarcilig any third party's products or servicus does not constitute Tis approval, warranly or endorsement thereot.

