BAB V

KESIMPULAN

1. Modulasi Quadrature Phase shifi keying (QPSK) menghasilkan 4 fasa yang berbeda, terdiri dari 2 bit atau simbol sesuai dengan prinsip modulasi QPSK.
2. Sinyal termodulasi QPSK merupakan jumlah dari 2 sinyal kanal Q (cos dan \cos) dan 2 sinyal kanal I (sin dan - \sin) yang membentuk 4 kombinasi. Hasil pengujian dari input data sinyal $00,01,10,11$ menghasilkan pergeseran phasa $90^{\circ}, 180^{\circ}, 90^{0}, 180^{0}$
3. Setelah melalui pengujian di laboratorium, modulator QPSK yang dirancang dan sudah bekerja sesuai dengan apa yang diharapkan di mana pada outputnya menghasilkan sinyal termodulasi QPSK yang akan di kirim ke demodulator.
4. QPSK adalah modulasi dengan amplitudo yang sama dengan phasa berubahubah, untuk mendapatkan amplitudo yang sama dengan cara mengatur potensiometer 50 k Ohm pada rangkaian balanced modulator kanal I dan kanal Q.

DAFTAR PUSTAKA

1. B.P.Lathi. 1989. Modern Digital And Analog Communication Systems. Florida. Saunders College Publishing.
2. Sunariyadi,"Pembuatan Simulator Interaktif Pengiriman Dan Pener:maan Informasi Menggunakan Teknik Modulasi Digital PSK", PENS-ITS, 2009.
3. H. Young, Paul, Electronic Communication Technique, Fourth Edition, Prentice Hall International, USA, 1999.
4. William F. Egan, PH.D. 1998. Phase-Lock Basic. Canada. John Wiley \& Sons,INC.
5. SN 7495A 4-Bit Parallel Acces Shift Registers
(http://www.alldatasheet.com/datasheet-pdf/pdf/27427/TL'SN7495A.html) (0 I/08/12 08.30 PM)
6. Teori Modulasi
(http://id. wikipedia.org/wiki/Modulasi)
(20/07/12 09.30 PM)
7. MC 1496 Balance Modulator
(http://www.datasheetarchive.com/balanced\ modulator\% $\% 20 \mathrm{MCl} 496$ datasheet.html)
(25/07/12 09.00 PM)

LAMPIRAN 1

DATA SHEET

MC 1496 BALANCE MODULATOR

AN531/D

MC1496 Balanced Modulator

Prepared by: Roy Hejhall
Applications Engineering

INTRODUCTION

The ON Semiconductor MC1496 monolithic balanced modulator makes an excetlent building block for bigh frequency communications equipment.

The device functions as a broadband, double-sideband suppressed carrier balanced nrodulator without a requirement for transformers or uned circuits. In addition to its basic application as a balanced modulator/demodulator, the device offiers excellent performance as an SSB product detector, AM modulator/detector. FM detector, mixer, frequency doubler, phase detector, and more.

The article consists of a general description of the MCl496, its gain equations, biasing information, and circuits illustrating typical applications. It is followed by an appendix containing a detailed mathematical ac and de analysis of the device.

Many readers may tind that one of the circuits described in the article will fill the needs of their application. However. it is impossible to show typical circuits for every possible requirement, and the detailed analysis given in the appendix will assist the designer in developing an optimum circuit for any application within the basic capabilities of the MC1496.

ON Semiconductor

http://onsemicom

APPLICATION NOTE

MC1496 General Description

Figure 1 shows a schematic diagram of the MC1496. For purposes of the analysis, the following conventionat assumptions have been made for simplification: (1) Devices of similar geometry within a monolithic chip are assumed identical and matched where necessary, and (2) transistor base currents are ignored with respect to the magnitude of collector currents; therefore, collector and emitter currents are assumed equal.

Referring to Figures 1 and 2, the MCl496 consists of differential amplifier Q5 Q6 driving a dual differential amplifier composed of transistors $\mathrm{Q1}, \mathrm{Q} 2, \mathrm{Q} 3$ and Q 4 . Transistors Q7 and Q8 and associated bias circuitry form constant current sources for the lower differential amplifier Q5 Q6.

The analysis of operation of the MC 1496 is based on the ability of the device to deliver an output which is mroportional to the product of the inpul voltages V_{X} and V_{Y}. This holds true when the magnitudes of VX and V_{Y} are maintainod within the limits of linear operation of the three differential amplifiers in the device. Expressed mathematically, the output voltage (actually output current, which is converted to an output

Figure 1. MC1496 Schematic

AN531/D

$$
\begin{aligned}
& \text { transistors while not exceeding the voltages given in the } \\
& \text { absolute maximum rating table; } \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{6}, V_{12}\right)-\left(\mathrm{V}_{8}, V_{10}\right)\right] \geq 2 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{8}, V_{10}\right)-\left(\mathrm{V}_{1}, \mathrm{~V}_{4}\right)\right] \geq 2.7 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{1}, V_{4}\right)-\left(\mathrm{V}_{5}\right)\right] \geq 2.7 \mathrm{Vdc}
\end{aligned}
$$

The foregoing conditions are based on the following assumptions:

$$
v_{6}=v_{12}, \quad v_{8}=v_{10}, \quad v_{1}=v_{4}
$$

The other consideration in bias design is total device dissipation, which must not exceed 680 mW and 575 mW at $\mathrm{T}_{\mathrm{A}}=2 \mathscr{C}$, respectively, for the metal and ceramic dual in-line packages.

From the assumptions made above total device dissipation may be computed as fotlows:

$$
\begin{equation*}
P_{D}=21_{5}\left(V_{6}-V_{14}\right)+15\left(V_{5}-V_{14}\right) \tag{19}
\end{equation*}
$$

For examples of various bias circuit designs, refer to Figures 3, 8 and 9.

Balanced Modulator

Figure 3 shows the MCl 496 in a balanced moditator circuil operating with +12 and 8 voll supplies. Exceltent gain and carrer suppression can be obtained with this circuit by operating the upper (carrier) diffierential amplifiers at a saturated level and the lower differential amplifier in a linear mode. The recommended input signal levels are 60 raV mis for the carrier and 300 mV mas for the maximum modulating signal levets.

For these input tevels, the suppression of carrier, carrier harmonics, and sidebands of the carrier harmonics is given in Figures 4 and 5.

The modulating signal must he kept at a level on insure linear operation of lower differential amplifier QS Q6. If the signal imput level is too high, harmonics of the modulating signal are generaled and appear in the output as spurious sidebands of the suppressed carrier. For a
maximum modulating signal input of 300 mV mms , the suppression of these spurious sidebands is typically 55 dB a a carrier frequency of 500 kHz .

Sideband output levels are shown in Figure of for various input levels of both carrier and modulating signal for the circuit of Figure?

Operating with a high level carrier input has the advantages of maximizing device guin and insuring that any amplitude variations present on the cartier do not appear on the output sidebands. It has the disadvantage of increasing some of the spurious signals.

Fourice analysis for a 50% duty cycle switching waveform at the carrier differential amplifiers predicts to even harmonics of the carrier (Appendix). However, the second harmonic of the carrier is suppressed only abrout 20 dB in the LF and HF range with a 60 mV carrier injection level. apparently due to factors such as the waveform not being a perfect square wave and slight mismatch between transistors. If the sine wave carrier signal is replaced with a 300 mV peak to peak square wave, an additional 15 dils of carrier, second-harmonic suppression is achieved. Attempling to accomplish the same result by increasing carrier sine wave amplitude degrades carrier suppression due to additional carrier feedthrough with, however, no increase in the desired sideband output levels.

Operation with the carrier differential amplifiers in a linear mode theoretically should produce only the desired sidebands with mo spurious outputs. Such linear operation is achieved by reducing the carnier input level wo 15 mV rms or less.
This mode of operation does reduce spurious output levels signiftcantly. Table 1 lists a number of the spurious output levels for high (60 mV) and low (10 mV) level carrier operation. Reduction of carrier injection from 60 mV to 10 mV decreased desired sidetand output by 12.4 dB . This is in excellent agrement with the analysis in the Appendix, which predicts 12.5 dB .

Figure 3. Batanced Modulator Circuit

Figure 4. Balanced Modulator Carrier Suppression versus Frequency

Figure 5. Balanced Modulator Suppression of Carrier Harmonic Sidebands versus Carrier Frequency

Figure 6. Balanced Modulator Sideband Output versus Carrier and Modulating Signal Inputs. Single Ended Operation.

Table 1. Suppression in dB of Spurious Outputs Below Each Desired Sideband (C . \pm fs) for High and Low Level Carrier Injection Voltages

	c	2 c	3 C	$24 \mathrm{C} \pm \mathrm{fs}$	$3 \mathrm{C} \pm \mathrm{f} \mathrm{s}$
High Levei Cartier Imput 60 mV(rms)	66 dB	35 dB	70 dB	43 dB	19 dB
Low Level Carrier Input $40 \mathrm{mV}(\mathrm{ms})$	66 dB	45 dB	70 dB	53 dB	46 dB

Carrier Frequency $=500 \mathrm{kHz}$.
Modulating Signad $=1.0 \mathrm{kHz}$ at $300 \mathrm{mV}(\mathrm{rms})$.
Circuit of Figure 3.
Spurious levels during low level operation are so low that they are affiectext significantly by the special purity of the carrier input signal. For example, initial readings for Table I were taken with a carrier signal gentrator which has second and third harmonies 42 and 45 dB below the fundamental, respectively. Additional fittering of the carrer input signal was required to measure the the second and third carrier-harmonic suppression of the MC1496.

The decision to operate with a kow or high level carrier inpul would of course depend on the application. For a typical filter type SSB generator, the filter would remove all spurious outputs except some spurious sidebands of the carrier. For this reason operation with a high level carrier would probably be selected to maximize gain and insure that the desired sideband does not contain any spurious amplitude variations presen on the carrier input signal.

On the other hand, in a low frecpency broadband balanced modulator spurious oupputs at any firequency may be undesirable and low level carrier operation may be the best choice.

Good carrier suppression over a wide temperature range requires low de resistances between the bases of the lower differential amplitier (pins 1 and 4) and g round it is recommended that the values of these resistors not be increased significantly higher than the 51 obms utilized in the circuit shown in Figure 3 in applications where carrier suppression is important over full operating temperature range of $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Where operation is to be over a lirnited temperature range, resistance values of up to the low kilohm range may be used.

Amplitude Modulator

The MC1496 balanced modulater circuil shown in Figure 3 will function as an amplitude modulator with just one minor modification. All that is necescary is to unbatance the carnier null to insert the proper amount of carrier into the output signal. However, the null circuiry used for balanced modulator operation does not provide sufficient adjustment range and must be modified. The resulting amplate modulator is shown in Figure 7. This nodulator will provide excellent modulation at any percentage from rero to greater than 100 percent.

Figure 7. Amplitude Modulator

Figure 8. Product Detector +12 Vdc Single Supply

Figure 9. Double Balanced Mixer, Broadband inputs, 9 MHz Tuned Output

AN531/D

Product Detector

Figure 8 shows the MC14\% in an SSB product detector configuration. For this application, alt firequencies except the desired demodulated audio are in the RF spectrum and can be casily filtered in the ounpur. As a result, the carrier null ad jusuruent need not be included.
Upper differential amplifiers Q1 Q2 and Q3-Q4 are again driven with a high level signal. Since carrier output levet is nox important in chis application (carrier is filtered in the output) carrier input level is not critical. A high level carrier input is desirable to naximize gain of the detector and to remove any carrier amplitude variations from the output. The circuit of Figure 8 performs well with a carrier input level of 100 to 500 mV rms.

The modulated signal (single-sideband, suppressed carrier) input tevel to differential amplifier pair Q5-(\% is maintained within the limits of linear operation. Excellent linearity and undistorted audio ounpun may be achieved with an SSB input signal level range up to 100 mV rms. Again, no transformers or tuned circuats are required for excellent product detector performance fron very low frequencies up to 100 MHz .
Another advantage of the MC 1496 product detector is is high sensitivity. The sensitivity of the product detector shown in Figure 8 fir a 9 MHz SSB signal input and a 10 dm signat plus noise to nosise [$\mathrm{S}+\mathrm{N}$) N$]$ ratio at the output is 3 microvols. For a $20 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) \mathrm{N}$ ratio audio output signal it is 9 microvols.

For a $30 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ ratio, demodulated audio output signal, a 9 MHz SSB input signal power of -101 dBm is required. As a resulh, when operated with an SSB receiver wihh a 50 ohm input impedance, a 0.5 mierovolt RF input signat would require only 12 dB overall power gain from anterna input terminals to the MC1496 product detector.
Note also that dual outputs are available firant the product detector, one from pin 6 and another from pin 12. One outpun can drive the recciver audio amplifiers white a separate output is available for the AGC system.

AM Detector

The product delector circuit of Figure 8 may also be used as an AM detector. The modulated signal is applied to the upper dififerential amptifiers while the carrier signal is applied th) the lower differential amplifier.
Ideally, a constant ampliude carrier signal would be obtained by passing the nodulated signal through a limiter ahead of the MC1496 carrier input terminals. However, if the upper inpuat signal is at a high enough level ($>50 \mathrm{mV}$), its anplitude variations do not appear in the output signal. For this reason in is possible w use the product detector circuit shown in Figure 8 as an AM detector simply by applying the modulated signal to both inputs at a level of about 600 mV on modulation peaks without using a limiter ahead of the carricr input port. 1 small amount of distortion will be generated as the signal falls below 50 naV during modulation valleys, but it will probably not be significant in most applications. Advanlages of the MC1496 AM detector
include linear operation and the ability to have a detector stage with gain.

Mixer

Since the MC1496 generates an output signal consisting of the sum and diffietence frequencies of the two inpul signals only, it can also be used as a double balanced mixer.

Figure 9 shows the MC1496 used as a high frequency mixer with a broadband input and a uned ouput at 9 MHz . The 3 dB bandwidth of the 9 MHz output tark is $450 \mathrm{kH} /$.

The local oscillator (LO) signat is injected at the upper input port with a level of 100 mV ms. The modulated signal is injected at the tower input port with a maximuma level of about 15 mV rms. Note that for maximum conversion gain and sensitivity the external cmitter resistance on the lower diflierential amplifier pair has been reduced to zero.

For a 30 MHz input signal and a 39 MHz LO , the mixer has a conversion gain of 13 dB and an input signal sensitivity of 7.5 microvolts for a $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N} y \mathrm{~N}$ ratio in the 9 MHz output signal. With a signal input kevel of 20 mV , the highest spurious output signal was at $78 \mathrm{MHz}(2 \mathrm{fLO})$ and it was more than 30 diß below the desired 9 MHz output. All other spurious outputs were more than 50 dB down.

As the input is broadband, the mixer may be operated at any HF and VHF input freguencies. The same circuit was operated with a 200 MHz input signal and a 209 MHz LO. At this frequency the circuit had 9 dB conversion gain and a 14 microvole sensitivity.

Greater conversion gains can be achieved by using tuned circuits with impedance matching on the signal input port. Since the input impedance of the lower input port is considerably higher than 50 obms even with zero emitter resistance, most of the sig nal input power in the broadband configuration shown is being dissipated in the 50 ohm resistor at the input port.

The circuit shown has the advantage of a broadband input with simplicity and reasonable conversion gain. If greater conversion gain is desired, impedance matching at the signal input is recommended.

The input impedance at the signal input port is ploted in Figures 10 and 11. The oulput impedance is also shown in Figure 12. Both of these curves indicate the complex impodance versus frequency for single ended operation.

The nulling circuit permits nulling of the LO signal and results in a few diB additional LO suppression in the mixer output. The nulling circuitry the two $10 \mathrm{k} \Omega$ resis tors and S0 $\mathrm{k} \Omega$ potentioneter) may be eliminated when operating with a tuned output in many applications where the combination of inherent device baiance and the output tank provide sufficient LO suppression.

The tuned outpat tank may be replaced with a resistive bad to form a broadband input and ouput doubly balanced mixer. Magnitude of output load resistance becomes a simple mater of tradeoff between conversion gain and output signal bandwidth. As shown in Figure 12, the single ended output capacitance of the MC1496 at 9 MHz is typically 5 pF .

Figure 10. Signal-Port Parallel-Equivalent Input Resistance versus Frequency

Figure 11. Signal-Port Paraliel-Equivalent Input Capacitance versus Frequency

Figure 12. Single-Ended Output Impedance versus Frequency

With a 50 ohm output load, a 30 MHz input signal level of 20 mV , and 39 MHz LO signal level of 100 mV the conversion gain was -8.4 dB (loss). Isolation was 30 dB firmen input signal port to output port and 18 di 3 from LO signal port is output port.

Doubler

The MC1496 functions as a frequency doubler when the sarne signal is injected in broth input ports. Since the output signal contains only $\omega_{1} \pm \omega_{2}$ frequency components, there will be only a single output frequency at $2 \omega_{1}$, when $\omega_{1}=\omega_{2}$.

For operation as a broadband low frequency doubler, the balanced modulator circuit of Figure 3 need be modified only by adding ace coupling between the two imput ports and reducing the lower differential amplifier emiter resistance between pins 2 and 3 to zero (tieing in 2ω pin 3). The latter modification increases the circuit sensitivity and doubler gain.

A low firequency doubler with these modifications is shown in Figure 13. This circuit will double in the audio and low frequency range below 1 MHz with all spurious ontputs greater than 30 dB below the desired $2 \mathrm{f}_{\mathrm{N}}$ output signal.

For optimum output-signal spectral purity, both upper and lower differential amplifiers should be operated within their linear ranges. This corresponds to a maximum input signal tevel of 15 mV ms for the circuit shown in Figure 13.

If greater signal handling capability is desired the circuit may be modified by using a 1000 ohin resistance between pins 2 and 3 and a 10:I vollage divider to reduce the input signal at the upper port to $1 / 10$ the signal level at the lower port.

The MCl496 will also function very well as an RF doubler at frequencies up to and including UHF. Either a broadbard or a tuned output configuration may be used.

Suppression of spurious outputs is not as good at VHF and UHF. However, in the broadband configuration, the desired doubled output is still the highest magnitude output signal when doubling from 200 to 400 MHz , where the spurious outputs are 7 dB or more below the 400 MHz output. Even at this frequency the MCl496 is stil! superior to a conventional transistor doubler before output filtering.

Figure IA shows a 150 to 300 MHz doubler with output filtering. All spurious outputs are 20 dB or more betow the desired 300 MHz output.

Figure 13. Low Frequency Doubler

Figure 14. $\mathbf{1 5 0} \mathbf{- 3 0 0} \mathbf{M H z}$ Doubler

FM Detector and Phase Detector

The MCi496 provides a de output which is a fiunction of the phase difference between two input signals of the same frequency, and can therefore be used as a phase detector: This characteristic can also be utilized to design an FM detector with the $\mathrm{MCl496}$. All that is required is 40 provide a means by which the phase difference between the signals at the two input ports vary with the frequency of the PM signal.

Phase dependent FM delector operation can be explained by considering input and output currents for a high level signal al boht inpul ports. These waveforms are shown in Figure 15 with inputs in phase at \mathbf{A} and out of phase at B.

Since the output current is a constant times the product of the inpat currents, Figure 15 illustrates how a shift in phase between the two input signals causes a de level shift in the output.

Figure 15. Phase Detector Waveforms. High Level Inputs

AN531/D

Summary

A number of applications of the $\mathrm{MC} 14 \%$ monolithic balanced modulator integrated circuit have been explored. The basic device characteristics of providing an outpul signal at the sum and difference of the two input frequencies with options co gain and amplitude characteristics will undoubtedly lead to numerous other applications nor discussed in this article.

References

1. Gilbert, Barrie, "A DC-500 MHz Amplifier/ Multiplier Principle," paper delivered at the International Solid State Circuits Confirence, Fcbruary 16, 1968.
2. Gilber, Barrie, "A Prectse Four Quadrant Multiplier with Subnanosecond Response," IFEE Journal of Solid-State Circuits, Vol. SC - 3, No. 4, December 1968.
3. Biloti, Alberto, "Applications of a Monolithic Analog Multiphier," IEEE Journah of Solid -State Circuits, Vol. SC-3, No. 4, Decenber 1968.
4. Renschler, E., "Theory and Application of a Linear Four Quadran Monolithic Multiplier," EEE Magarine, Vol. 17, No. 5, May 1969.
5."Analysis and Basic Operation of the MC1595," ON Semiconductor, Application Note AN489.

APPENDIX

$A C$ and $D C$ Analysis

With refierence in Figure 2 of the text, the following equations apply:

$$
\mathrm{l}_{\mathrm{y}}=\frac{V_{y}}{R_{E}} \begin{align*}
& \text { (when } \mathrm{R}_{\mathrm{r}} \gg r_{e} \text {, the transistor } \tag{1A}\\
& \text { dynamic emilter resistance.) }
\end{align*}
$$

$$
\begin{align*}
& I_{2}=\frac{I_{1}+I_{y}}{1+e \frac{V_{x}}{B}}, \tag{2A}\\
& \left.\begin{array}{l}
13=\frac{11+y}{1+\theta \frac{-v_{x}}{x}} \\
15=\frac{11-1 y}{1+e}
\end{array}\right\}
\end{align*}
$$

$$
\begin{equation*}
a=\frac{k T}{q} \tag{3A}
\end{equation*}
$$

input level supplied to the upper four transistors:

$$
\left.\frac{\Delta V_{0}}{V_{\text {in }}}=A V=\frac{2 R_{L_{L}}}{R_{E}} \|(m)\right]
$$

$$
\begin{equation*}
V_{0}=\frac{2 R_{\mathrm{L}} V_{y}}{R_{E}}[f(\mathrm{~m})] \tag{10A}
\end{equation*}
$$

A curve of $\mathrm{f}(\mathrm{m})$ versus input levet supplied to the upper quad differential amplifier is shown in Figure 16 of the uext.

Figure 16. V_{X} versus [fm]
The MC1496 is therefore a linear multiplier over the range of V_{x} for which $[\mathrm{f}(\mathrm{m})\}$ is a linear fiunction of V_{x}. This range of x can be oblaired by inspection of Figure 16 and is approximately rero to 50 millivols.

Fxamining the case of a small stgnal V_{x} input kevel mathematically yields:
Assume

$$
\begin{equation*}
V_{x}<a \tag{11A}
\end{equation*}
$$

Then:

$$
\begin{gather*}
e^{m} \leq 0.1 \tag{12A}\\
e^{m}=1+m \tag{13A}\\
{[f(m)]=\left[\frac{(1-m)-(1+m)}{(2+m)(2-m)}\right]=\left(\frac{-2}{4}-\frac{m}{m^{2}}\right)} \\
\left(\frac{-2 m}{4-m^{2}}\right)=-\frac{2}{4} \frac{m}{2}=\frac{-m}{2} \tag{14A}
\end{gather*}
$$

Therefore
(19A)

$$
\begin{array}{r}
A V=\frac{V_{0}}{V_{y}}=\frac{2 R_{\mathrm{L}}}{R_{E}}\left(\frac{(-m)}{2}\right)=\frac{-R_{\mathrm{L}} m}{R_{E}} \\
V_{0}=\frac{-R_{\mathrm{L}} V_{y} m}{R_{E}}=\frac{-R_{\mathrm{L}} V_{\mathrm{y}} V_{\mathrm{x}}}{R_{E}}
\end{array}
$$

Equation (17A) shows that the MCl496 is a linear multipliter when $\mathrm{V}_{\mathrm{x}} \leq 2.6 \mathrm{mV}$. However, as was observext by inspection of Figute 16 earlier. the device is capable of approximate linear multiplier operation when $V_{X} \leq 50$ inV.

For the case of a karge sig nal V_{X} input level:

$$
\begin{aligned}
& v_{x}>a \\
& g^{m}>1
\end{aligned}
$$

$$
e^{-m}<1
$$

$$
V_{x}>a
$$

$$
\begin{gather*}
\left.A V=\frac{2 R_{L}}{R_{E}} \cdot \frac{-e^{m}}{\theta^{m}}\right]=\frac{-2 R_{b}}{R_{E}} \tag{20~A}\\
V_{0}=\frac{-2 R_{L} V_{Y}}{R_{E}} \tag{21A}
\end{gather*}
$$

Equation (20A) indicates that in this mode the output level is indepe ndent of the level of V_{x}. This characteristic is usefiul in many communications applications of the MCl496.

Mathematical analysis for input signals is given below for two modes of operation which cover most applications of the MCI496. These modes are (1) V_{x} and V_{y} both low level sine waves, and (2) low level sine wave for V_{y} and a large sig nal inpul for V_{x} (either a bigh level sine wave or a square wave impul) giving rise to a symmetrical switching operation of the upner differentiai amplifier quad, Q1, Q2. Q3, and Q4.

For sine wave input sig nals,

$$
\begin{align*}
& V_{x}=E_{x} \cos t r_{x} t \tag{22A}\\
& V_{y}=E_{y} \cos (1) y t \tag{23A}
\end{align*}
$$

where E_{x} and F :y are the peak values of the x and y input voltages, respectively. Therefore,

$$
\begin{equation*}
V_{0}=K E_{x} E_{y}\left(\cos \omega_{x}{ }^{t}\right)\left(\cos \omega_{y} t\right) \tag{24A}
\end{equation*}
$$

Pertorming this multiplication yields:

$$
V_{0}=\frac{K E_{x} E_{y}}{2} \cos \left(\omega_{x}+\left(\omega_{y}\right) t+\cos \left\{\left(\omega_{x}-\left(\omega_{y}\right) t\right.\right.\right.
$$

The second mode of operauon can be analyned by assuming square wave switching function in the upper differential amplifiers and applying Fourier analysis.

Figure 17. Input and Output Waveforms for a High Level Upper Input and Low Level Input Signals

- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGHGAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION
- REQUIRED
- SAME PIN CONFIGURATION AS THE UATO9

DESCRIPTION

The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intented for a wide range of analog applications.

- Summing amplifier
- Voltage follower
- Integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network ($6 \mathrm{~dB} /$ octave) insures stability in closed loop circuits.

ORDER CODE

Part Number	Temper ature Range	Package	
		N	D
UA741C	$0^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	\bullet	\bullet
UA7411	$-40^{\circ} \mathrm{C}+105^{\circ} \mathrm{C}$	\bullet	\bullet
UA741M	$-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$	\bullet	\bullet
Example : UA741CN			

N: Dual in Line Package (OIP)
$0=$ Smaw Outine Package (SO) -also avallable in Tape \& Reel (DT)

PIN CONNECTIONS (top view)

SN5495A, SN54LS95B
 SN7495A, SN74LS95B
 4-BIT PARALLEL-ACCESS SHIFT REGISTERS
 SDLSt28 - MARCH 1974 - REVISED MARCH 1989

Thes 4-bit registers feature parellel and sarial inputs, parallel outputs, mode control, and two clock inputs The regispers hive thre modes of operation:

Porellel (broadsidel lond
Shift right (the direction Q_{A} towerd Q_{D} l
Shift left (the direction O_{D} towerd O_{A})
Paraliel loading is accomplished by applying the four bits of date and taking the mode control input high. The date is lasded into the maciated flip-flops and eppears a the outputs after the highto-low transition of the clock-2 input. During lozding, the entry of serial deth is inhibited.

Shitt right is accomplished on the high-to-tow transi tion of clock ithen the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of exch flip flop to the paraliet input of the previous flip-fiop (OD_{D} to input C , otc.) and serial data is entered a input D. The clock input moy be appliod commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the furction table will also ensure that fegister contents are protected.

4M7408A . . N PACXACE

(TOP VIEW

 (TOP VIXW)

FUNCTIOM TAOLE

MNuTs								OUTMITS			
mode COMTMOL	clocks		Efrat	Parallel				04	0	0 c	0_{0}
	2 (1)	1 (${ }^{\text {a }}$)		4	\cdots	c	0				
H	H	x	\times	\times	X	\times	x	Q40	0_{80}	$a_{C 0}$	000
\cdots	4	x	x	*	b	$¢$	d	*	-	$¢$	4
${ }^{+}$	4	\times	\times	$a_{8}{ }^{\text {r }}$	$a_{c}{ }^{\prime}$	Opt	d	$0_{8 n}$	a_{0}	$0_{0 n}$	d
1	L	H	\times	x	\times	x	x	$\mathrm{O}_{\text {M }}$	0_{00}	$a_{c o}$	000
L	x	1	H	x	x	x	x	H	$O_{\text {an }}$	O_{8}	$0^{\text {cn }}$
L	\times	+	L	\times	\times	\times	\times	1	$O_{\text {An }}$	O_{Bn}	O_{cm}
'	1	L	\times	x	x	x	x	O_{40}	0^{80}	$a_{\text {co }}$	0_{00}
1	1	1	x	x	x	x	x	O_{40}	080	Oco	000
+	6	H	x	x	x	\times	x	O_{aO}	080	$a_{c o}$	000
+	H	L	x	x	x	x	x	a_{40}	O_{90}	$a_{C 0}$	000
\dagger	H	H	\times	x	x	\times	\times	a_{40}	O_{80}	$0^{C 0}$	0_{00}

[^0]
[^0]:

