SKRIPSI

ANALISIS ANTRIAN PROSES PRODUKSI PELEMBAB SARIAYU DENGAN MENGGUNAKAN ARENA DI PT. MARTINA BERTO

Diajukan Sebagai Syarat Untuk Mencapai Gelar Sarjana Teknik Program Strata 1 (S1) Pada Jurusan Teknik Industri

JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA JAKARTA 2010

LEMBAR DENGESAHAN

SKRIPSI ANALISIS ANTRIAN PROSES PRODUKSI PELEMBAB SARIAYU DENGAN MENGGUNAKAN ARENA DI PT. MARTINA BERTO

Disusun oleh:

Nama: Okmadanti Citrasari

NIM: 04220003

Menyetujui:

Pembimbing Skripsi

Koordinator Skripsi/ Ketua Jurusan Teknik Industri

(Ade Supriatna, ST, MT)

(Ir. Atik Kurnianto, M. Eng.)

JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 2010

LEMBAR DERNYATAAN

Nama

: Okmadanti Citrasari

NIM

: 04220003

Jurusan

: Teknik Industri

Fakultas

: Teknik

Telah disidangkan dihadapan panitia sidang serta dosen penguji. Dan dinyatakan lulus sebagai sarjana Teknik Industri program Strata 1 (S1).

Menyetujui,

Dr. Ir. Budi Sumartono, MT.

Dosen Penguji I

<u>Ir. Atik Kurnianto, M.Eng.</u> Dosen Pe<mark>nguji</mark> II

JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 2010

LEMBAR DENGESAHAN

Nama

: Okmadanti Citrasari

NIM

: 04220003

Jurusan

: Teknik Industri

Fakultas

: Teknik

Dengan ini menyatakan bahwa skripsi ini disusun sendiri berdasarkan hasil peninjauan, penelitian lapangan, wawancara dan bimbingan serta dari bukubuku referensi lain yang terkait dan relevan dengan materi skripsi ini.

Jakarta, 12 Juli 2010

DJP (Okm<mark>adanti C</mark>itrasari)

JURUSAN TEKNIK INDUSTRI **FAKULTAS TEKNIK** UNIVERSITAS DARMA PERSADA 2010

ABSTRAK

Seiring dengan keinginan konsumen yang semakin beragam, PT. Martina Berto selalu berusaha untuk melakukan inovasi dalam menciptakan produk-produk baru. Pelembab merupakan salah satu produk pareto yang menjadi prioritas utama untuk diproduksi. Namun karena keterbatasan alat untuk proses pembuatan pelembab, sehingga sering terjadi antrian bahan baku untuk diproses. Berdasarkan hal ini, penulis mencoba menganalisis permasalahan antrian yang terjadi dengan menggunakan simulasi khususnya dengan software Arena. Analisis antrian dilakukan dengan menentukan panjang antrian, membuat model simulasi juga dengan menentukan alternatif solusi/pemecahan masalah dengan melihat ongkos ekuivalen tahunan yang paling minimum.

Komponen dasar antrian terdiri dari kedatangan, pelayanan, antri. Simulasi merupakan suatu kumpulan tentang metode dan aplikasi untuk meniru perilaku system yang sesungguhnya, biasanya melalui sebuah computer dengan menggunakan software yang sesuai. Software Arena merupakan salah satu alat simulasi yang berfungsi untuk memberikan informasi tentang rata-rata panjang antrian yang terjadi, rata-rata waktu antrian, dan persentase waktu kesibukan. Analisa penggantian digunakan untuk memberikan pertimbangan-pertimbangan ekonomis yang berkaitan dengan alternatif pemakaian atau penggantiannya dengan alat yang baru.

Pengumpulan data dilakukan dengan metode observasi dan wawancara. Data-data berisi waktu dan jarak antar stasiun kerja, serta data biaya. Data waktu antar kedatangan 20 menit, waktu pemeriksaan bahan A 20 menit, waktu pemeriksaan bahan B 10 menit, waktu pemeriksaan bahan C 5 menit, waktu proses mesin Fryma 150 menit, waktu proses mesin Double Jacket 45 menit, waktu pemeriksaan QC 15 menit, waktu pengemasan produk antara 20 menit, waktu proses mesin Filling 4 menit, waktu packing box 10 menit. Data biaya terdiri dari interest rate sebesar 6%, nilai awal, nilai sisa, biaya listrik sebesar Rp. 25.000.000, pajak dan asuransi sebesar 10% dari nilai awal, serta biaya tenaga kerja langsung

Hasil simulasi pada kondisi awal menunjukkan bahwa antrian paling panjang terjadi pada stasiun kerja mesin Fryma dengan panjang antrian maksimum sebesar 102 unit, rata-rata panjang antrian sebesar 49,050 unit, waktu rata-rata antrian sebesar 412,97 menit. Pada kondisi analisis didapat panjang antrian maksimum mesin Fryma menjadi sebesar 39 unit, rata-rata panjang antrian 18,838 unit, waktu rata-rata antrian sebesar 408,45 menit. Pada mesin Fryma 2 panjang antrian maksimum sebesar 53 unit, rata-rata panjang antrian sebesar 24,478 unit, waktu rata-rata antrian sebesar 395,16 menit. Dari hasil analisis penggantian, alternatif ketiga yaitu dengan menambah jam kerja karyawan memberikan ongkos ekuivalen paling minimum, yaitu sebesar Rp. 76,828,250.

KATA PENGANTAR

Puji syukur saya panjatkan ke hadirat Allah SWT yang telah memberikan rahmat dan hidayah-Nya sehingga skripsi yang berjudul "Analisis Antrian Proses Produksi Pelembab Dengan Menggunakan Arena di PT. Martina Berto" dapat diselesaikan dengan baik. Tugas akhir ini diajukan sebagai salah satu syarat untuk mencapai gelar sarjana teknik di Fakultas Teknik, Universitas Darma Persada.

Pada kesempatan ini, penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Ade Supriatna, ST., MT., selaku Pembimbing Akademik penulis untuk penulisan skripsi ini.
- Bapak Ir. Atik Kurnianto, M.Eng., selaku Ketua Jurusan serta sebagai koordinator tugas akhir Teknik Industri Universitas Darma Persada.
- 3. Ibu Dra. Arie M. Kolopaking, Apt., selaku Plant Manger di PT. Martina Berto.
- Ibu Adelita selaku Manager Produksi di PT. Martina Berto.
- 5. Bapak Edwin Tilaar, ST., selaku Supervisor Produksi Liquid dan rekan-rekan produksi liquid.
- 6. Ibu DR. Anna S. Ranti, selaku Research Manager PT. Martina Berto.
- 7. Herbal Research dan RM Appraisal tim, Safety dan Efficacy Evaluation tim serta rekan-rekan R&D lainnya terima kasih atas dukungannya.
- Teman-teman angkatan 2004 jurusan Teknik Industri malam serta teman-teman FT Unsada lainnya terima kasih atas ide dan dukungannya.
- 9. Keluargaku tercinta (Mama, Mba Asih, Mas Rahmat) terima kasih atas dukungan dan cintanya.

Dengan segala kerendahan hati saya menyadari masih banyak kekurangan-kekurangan yang terdapat dalam penulisan skripsi ini, maka kritik dan saran yang membantu penyempurnaan akan saya terima dengan senang hati.

Akhir kata saya mengharapkan semoga laporan ini dapat memberikan sumbangan yang berarti khususnya bagi yang memerlukannya dalam bidang Teknik Industri.

DAFTAR ISI

	Halaman
Kata Pengantar	i
Daftar Isi	iii
Daftar Tabel	vii
Daftar Gambar	viii
Daftar Pustaka	ix
Lampiran	X
BAB I: PENDAHULUAN	
1.1 Latar Belakang Masalah	1
1.2 Perumusan Ma <mark>salah</mark>	2
1.3 Pembatasan <mark>Masa</mark> lah	3
1.4 Maksud da <mark>n Tujua</mark> n Pen <mark>elitian</mark>	3
1.5 Metodologi <mark>Peme</mark> cahan <mark>Masala</mark> h	3
1.6 Sistematika <mark>Penuli</mark> san <mark></mark>	4
BAB II: LANDASAN TEORI	
2.1 Pemodelan Sist <mark>em</mark>	6
2.1.1 Pemodelan	6
2.1.1.1 Definisi model	6
2.1.1.2 Jenis-jenis model	6
2.1.1.3 Kegunaan model	8
2.1.2 Sistem	9
2.1.2.1 Definisi system	9
2.1.2.2 Konsepsi system	11
2.1.2.3 Perspektif system	12
2.1.2.4 Karakteristik system	14

2.1.2.5 Klasifikasi system	16
2.2 Sistem Antrian	20
2.2.1 Komponen Dasar Antrian	22
2.2.2 Struktur Dasar Proses Antrian	23
2.2.3 Disiplin Antrian	25
2.2.4 Model-model Antrian	26
2.3 Simulasi	29
2.3.1 Pengertian Simulasi	30
2.3.2 Alasan Menggunakan Simulasi	31
2.3.3 Kelebihan dan Kekurangan Simulasi	32
2.3.4 Langkah-langkah dalam Proses Simulasi	34
2.4 Software Arena	35
2.4.1 Konsep Template	35
2.4.1.1 Template pada Arena	36
2.4.2 Animasi dalam Arena	36
2.4.3 Kons <mark>ep dan T</mark> ermin <mark>ologi</mark>	37
2.4.4 Anali <mark>sis Sta</mark> tistik	38
2.4.5 Memu <mark>lai Ar</mark> ena	45
2.4.5.1.1 Analisis input	45
2.4.5.1.2 S <mark>imul</mark> asi Arena	47
2.5 Konsep Dasar <mark>tentang</mark> Ekonomi Teknik	62
2.5.1 Depresiasi	64
2.5.1.1 Dasar <mark>perhitungan depresiasi</mark>	65
2.5.2 Analisa Penggantian	67
2.5.2.1 Beberapa Contoh Analisa Penggantian	68
BAB III: METODOLOGI PEMECAHAN MASALAH	
3.1 Identifikasi Masalah	71
3.1.1 Studi Lapangan	72
3.1.2 Studi Pustaka	72
3.2 Perumusan Masalah	72

3.3 Pengumpulan Data	73
3.4 Pengolahan Data	73
3.4.1 Software Arena	74
3.5 Analisa dan Pembahasan	74
3.6 Kesimpulan dan Saran	74
BAB IV: PENGUMPULAN DAN PENGOLAHAN DATA	
4.1 Pengumpulan Data	76
4.1.1 Data Umum	76
4.1.1.1 Sejarah Singkat Perusahaan	76
4.1.1.2 Visi dan Misi Perusahaan	78
4.1.1.3 Filosofi Dasar Perusahaan	79
4.1.1.4 Pengharga <mark>an yang D</mark> iperoleh	80
4.1.1.5 Jenis Produk PT. Martina Berto	81
4.1.1.6 Lo <mark>kasi da</mark> n Sarana PT. Martina Berto	89
4.1.1.7 Struktur Organisasi Perusahaan	90
4.1.2 Data <mark>Khusu</mark> s	97
4.1.2.1 Alur Administrasi	97
4.1.2.2 Proses Produ <mark>ksi P</mark> elembab	99
4.1.3 Data Tek <mark>nis</mark>	101
4.1.3.1 W <mark>aktu ked</mark> atangan bahan baku	101
4.1.3.2 Wa <mark>ktu proses produksi</mark> .	102
4.1.3.3 Jarak <mark>dan waktu antar stasiun</mark>	106
4.2 Pengolahan Data	106
4.2.1 Analisis Statistik	106
4.2.2 Simulasi Arena pada Kondisi Awal	112
4.2.3 Simulasi Arena pada Kondisi Analisis	119
4.2.4 Perhitungan Ongkos Ekuivalen dengan	
Analisa Penggantian	126

BAB V: ANALISA DAN PEMBAHASAN	
5.1 Analisa	131
5.2 Pembahasan	134
BAB VI: KESIMPULAN DAN SARAN	
6.1 Kesimpulan	138
6.2 Saran	139

DAFTAR TABEL

		Halaman
Tabel 4.1	Data Waktu Antar Kedatangan	101
Tabel 4.2	Data Waktu Pemeriksaan Bahan A	102
Tabel 4.3	Data Waktu Pemeriksaan Bahan B	102
Tabel 4.4	Data Waktu Pemeriksaan Bahan C	103
Tabel 4.5	Data Waktu Proses Mesin Fryma	103
Tabel 4.6	Data Waktu Proses Mesin Double Jacket	104
Tabel 4.7	Data Waktu Pemeri <mark>ksaan QC</mark>	104
Tabel 4.8	Data Waktu Pengemasan Produk Antara	105
Tabel 4.9	Data Waktu Mesin Filling	105
Tabel 4.10	Data Waktu Packing Box	106
Tabel 4.11	Hasil An <mark>alisa</mark> Statistik	110
Tabel 4.12	Hasil Si <mark>mulas</mark> i Arena p <mark>ada</mark> Kondisi Awal	113
Tabel 4.13	Hasil Simulasi Arena pada Kondisi Analisis	120
Tabel 5.1	Hasil Anal <mark>isa S</mark> imulasi Arena	131
Tabel 5.2	Alternatif dengan Analisa Penggantian	133

DAFTAR GAMBAR

	На	alaman
Gamhar 2.1	Kerangka Dasar Sistem	12
	Komponen Dasar Antrian	22
Gambar 2.3	Struktur Dasar Proses Antrian	24
Gambar 3.1	Kerangka Pemecahan Masalah	75
Gambar 4.1	Diagram Alir Material Proses Pelembab	99
Gambar 4.2	Histogram Data Waktu antar Kedatangan	107
Gambar 4.3	Distribusi Triangula <mark>r Wa</mark> ktu antar Kedatangan	108
Gambar 4.4	Simulasi Arena pada Kondisi Awal	112
Gambar 4.5	Simulasi A <mark>rena p</mark> ada Kondisi Analisis	119

BABI

PENDAHULUAN

1.1. Latar Belakang Masalah

Dalam sebuah pabrik yang dalam istilah asingnya dikenal sebagai factory atau plant – merupakan sebuah tempat dimana faktor-faktor seperti manusia, mesin dan faktor produksi lainnya, material, energi, uang, informasi dan sumber daya alam dikelola bersama-sama dalam suatu sistem produksi guna menghasilkan suatu produk atau jasa secara efektif dan efisien.

PT. Martina Berto Jakarta, salah satu perusahaan yang ada di Indonesia yang berorientasi pada bisnis (kosmetika dan obat tradisional) yang berdiri sebagai realisasi dari keinginan besar DR. Martha Tilaar sebagai pendiri perusahaan, merupakan salah satu perusahaan yang tidak hanya berusaha untuk mengembangkan produknya tetapi juga berusaha meningkatkan jumlah produksi agar permintaan konsumen tetap terpenuhi dengan tetap memperhatikan faktor manusia sebagai pekerja dan mesin yang digunakan.

Seiring dengan keinginan konsumen yang semakin beragam, PT. Martina Berto selalu berusaha untuk melakukan inovasi dalam menciptakan produk-produk baru. Hal ini menyebabkan banyaknya varietas produk yang diproduksi dan tentu saja akan mempengaruhi produktivitas dari bagian produksi.

Pelembab merupakan salah satu produk pareto yang menjadi prioritas utama untuk diproduksi. Namun karena PT. Martina Berto memproduksi pelembab dengan berbagai *Brand*, dan hanya terdapat satu mesin untuk proses pembuatan pelembab sehingga sering terjadi antrian bahan baku untuk diproses.

Berangkat dari permasalahan diatas saya ingin mencoba untuk melakukan suatu pengamatan di bagian produksi khususnya proses liquid untuk mengetahui dan menganalisis tentang masalah tersebut, sehingga dapat diketahui seberapa besar antrian yang terjadi di proses produksi pelembab dan bagaimana solusinya dengan menggunakan software Arena.

1.2 Perumusan Masalah

Banyaknya varietas produk dan keterbatasan alat yang ada bukan menjadi suatu alasan sehingga terkadang terjadi antrian mesin pada proses produksi. Sebagai salah satu perusahaan yang selalu mengutamakan kepuasan konsumen serta agar tetap bisa memenuhi permintaan pasar, PT. Martina Berto selalu berusaha untuk memperbaiki sistem yang ada ke arah yang lebih baik. Berdasarkan hal tersebut, maka dapat diambil suatu rumusan masalah sebagai berikut:

"Bagaimana menentukan sistem antrian pada proses produksi pelembab dengan menggunakan software Arena".

1.3 Pembatasan Masalah

Adapun masalah-masalah yang diteliti dibatasi sebagai berikut:

- Penelitian dilakukan hanya pada bagian proses liquid khususnya pembuatan pelembab.
- 2. Data yang diteliti yaitu data pada bulan April Juli 2009.
- Simulasi yang digunakan ialah menggunakan software Arena.
- 4. Data yang diambil dianggap cukup dan valid.
- 5. Interest Rate pada penelitian sebesar 6% berdasarkan suku bunga Bank saat ini.

1.4 Maksud dan <mark>Tujua</mark>n

Maksud dan <mark>tujua</mark>n dari p<mark>eneliti</mark>an ini ad<mark>alah s</mark>ebagai <mark>berik</mark>ut:

- Menentukan panjang antrian produk pada proses liquid.
- 2. Membuat model simulasi sistem antrian yang terjadi pada proses liquid menggunakan software Arena.
- 3. Menentukan alternatif solusi/penyelesaian masalah antrian berdasarkan ongkos yang minimum.

1.5 Metodologi Pemecahan Masalah

Ada dua metode yang digunakan guna memecahkan masalah, yaitu:

1. Studi Lapangan

Yaitu dengan meneliti secara langsung pada suatu objek dengan cara sebagai berikut:

⇒ Observasi

Merupakan pengamatan secara langsung di lapangan dengan cara mengamati proses yang berjalan dan mencatat semua peristiwa yang terjadi yang berhubungan dengan masalah yang diteliti.

2. Studi Pustaka

Kegiatan ini dilakukan dengan membaca dan mempelajari bukubuku tentang teori yang berhubungan dengan masalah yang berkaitan dengan topik pembahasan.

1.6 Sistematika Penulisan

Secara sistem<mark>atika</mark> penulisan tugas akhir ini adalah sebagai berikut:

BAB I Pendahu<mark>luan</mark>

Pada bab ini berisi tentang latar belakang masalah, maksud dan tujuan, perumusan masalah, pembatasan masalah, metodelogi pemecahan masalah dan sistematika penulisan.

BAB II Landasan Teori

Bab ini berisi teori-teori umum dan khusus yang berkaitan dengan pengolahan dan analisa data dari permasalahan yang dikemukakan mencakup teori antrian, simulasi, teori penggunaan software Arena.

BAB III Metodologi Penelitian

Pada bab ini berisi tentang sistematika yang dilakukan dalam memecahkan masalah serta Kerangka Pemecahan Masalah.

BAB IV Pengumpulan dan Pengolahan Data

Mencakup didalamnya pengumpulan dan pengolahan data yang telah diperoleh dari suatu masalah.

BAB V Analisa

Dalam hal ini pengolahan data yang telah dilakukan dianalisa untuk memperoleh gambaran tentang apa yang telah terjadi dan bagaimana solusinya, sesuai dengan fakta di lapangan.

BAB VI Kesimpulan dan Saran

Bab ini mengemukakan kesimpulan yang diperoleh dari pengolahan data yang telah dilakukan dan saran-saran yang diharapkan dapat berguna dalam menghadapi permasalahan yang ada.