BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian, dapat disimpulkan bahwa:

- Dalam penelitiani ini, telah berhasil dibuat alat uji emisi non-resmi yang menggunakan ESP32 WROOM-32 sebagai kontroler utama dan chip yang terhubung ke WiFi.
- Alat uji emisi non-resmi ini mampu mendeteksi kadar gas Karbon Monoksida (CO) yang menggunakan sensor MQ-7, Hidrokarbon (HC) yang menggunkaan sensor MQ-9, dan Nintrogen Oksida (NOx) yang menggunakan sensor MQ-135 dan mendeteksi partikel debu PM 2.5 yang menggunkanan sensor GP2Y1010AU0F.
- 3. Aplikasi EmissionEZ telah berhasil ditambahkan fitur *chatbot* yang menggunakan *API GPT*, yang digunakan sebagai pemberitahuan tindakan service yang tepat bersadarkan data data kendaraan yang dimasukan data hasil uji emisi non-resmi.
- 4. Dengan demikian, dapat disimpulkan bahwa alat uji emisi non-resmi ini memiliki potensi untuk memberitahu pelanggan tentang keadaan kendaraannya dan mengetahui bagian mana yang harus di *service* tanpa harus takut ditipu oleh pihak teknisi. Dengan itu hal itu dapat meningkatkan kepercayaan pelanggan dengan pihak bengkel sehingga dapat menarik pelanggan lebih banyak lagi.

5.2 Saran

Berdasarkan temuan penelitian ini, ada beberapa rekomendasi untuk pengembangan lebih lanjut sistem implementasi chatbot dalam pengujian emisi kendaraan non-resmi, antara lain:

- Pengembangan lebih lanjut dari fitur chatbot seperti menggunakan chatbot yang menggunakan dataset yang tersedia sehingga tidak memerlukan API GPT.
- 2. Pengembangan lebih lanjut alat uji emisi non-resmi dengan menggunakan sensor sensor yang memiliki sensitivitas yang lebih baik.
- 3. Menggunakan alat uji emisi resmi untuk alat pembanding sehingga dapat menentuan kalibrasi yang tepat.