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Lampiran 3. Codingan Python

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import io

import base6d

import time

from pymongo import MongoClient, errors

from statsmodels.tsa.arima.model import ARIMA

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler, LabelEncoder
from datetime import datetime

from sklearn.metrics import silhouette score,
calinski harabasz score

from sklearn.decomposition import PCA

import numpy as np

from statsmodels.tsa.stattools import adfuller

from sklearn.metrics import mean squared error

from sklearn.metrics import mean absolute error

import itertools

# MongoDB connection with error handlingecho "# ForecastApp" >>
README . md
try:

client =
MongoClient ("mongodb+srv://krisna:krisna@cluster0.3maollf.mongodb.
net/?retryWrites=trues&w=majority&appName=ClusterQ")

db = client['dbkrisna']

collection visualisasi = db['visualisasi']

collection history = db['history']
except errors.ConnectionError as e:

st.error ("Could not connect to MongoDB. Please check your
connection settings.")

st.stop() # Stop the app if the connection fails

# User management

users = {
"admin": {"password": "admin", "role": "admin"},
"upst": {"password": "admin", "role": "user"},
"psm": {"password": "admin", "role": "user"}

def add user (username, password) :
if username not in users:
users[username] = {"password": password, "role": "user"}
return True
return False

def edit user (username, new password=None) :
if username in users:
if new password:
users[username] ["password"] = new password




return True
return False

def delete user (username) :
if wusername in users and username != "admin": # Prevent
deletion of admin
del users[username]
return True
return False

def login():
st.title ("Login")
username = st.text input ("Username")
password = st.text input ("Password", type="password")
if st.button("Login"):
if username 1in users and users|[username] ["password"] ==
password:
st.session state['logged in'] = True
st.session _state['role'] = users[username] ["role"]
st.session state['username'] = username
st.rerun ()
else:

st.error ("Username atau password salah")

def clear collection(collection):
with st.spinner ("Mengosongkan collection..."):
collection.delete many({})
st.success ("Collection berhasil dikosongkan!")

def delete history by collection name(collection name) :
with st.spinner (f"Menghapus semua riwayat
'{collection name}'..."):
collection history.delete many({"collection name":
collection name})

def load data(collection):

progress bar = st.progress(0)
status_text = st.empty ()

cursor = collection.find()

data list = []

total = collection.count documents ({})
count = 0

for doc in cursor:
data list.append (doc)
count += 1

progress = int ((count / total) * 100)
progress_bar.progress (progress)
status_text.text (f"Memuat data... {progress}3")

time.sleep (0.01)

progress bar.empty ()

status_text.text ("Memuat data selesail")
data = pd.DataFrame (data list)

return data




def save data(collection, data):
collection.delete many({})

progress bar = st.progress(0)
status_text = st.empty()

records = data.to dict('records')
total = len(records)

batch size = 10

for i in range (0, total, batch size):
batch = records[i:itbatch size]
collection.insert many (batch)
progress = int (((i + len(batch)) / total) * 100)
progress bar.progress (progress)
status_text.text (f"Menyimpan data... {progress}3")
time.sleep(0.01)

progress bar.empty ()
status_text.success ("Data berhasil diunggah!")

def save history(*args, collection name) :
with st.spinner ("Menyimpan riwayat data..."):
history data = {}
for i, data in enumerate (args):
if isinstance(data, plt.Figure):
img stream = io.BytesIO()

data.savefig(img stream, format='png')
img stream.seek (0)

img data =
base64.b64encode (img_stream.read()) .decode ('utf-8")
history data[f"fig {i+1}"] = img data
else:

history data[f"data {i+1}"] =
data.to _dict('records')

history = {

"collection name": collection name,
"data": history data,
"timestamp": datetime.now () .strftime ("%Y-%m-%d

o\°

H:

o\°

M:

o\°

S")
}

collection history.insert one (history)

def load history(collection name=None) :
with st.spinner ("Memuat riwayat data..."):
if collection name:
history =
pd.DataFrame (list (collection history.find({"collection name":
collection name})))
else:
history =
pd.DataFrame (list (collection history.find()))
return history

def delete history(history id):




with st.spinner ("Menghapus riwayat data..
collection history.delete one({' id':

def show image from history(img data):
img = base64.b64decode (img data)

st.image (img, use container width=True)

def arima prediction(data) :

with st.spinner ("Membuat prediksi ARIMA..

month mapping = {

"Januari": 1, "Februari": 2, "Maret": 3, "April": 4,
"Mei": 5, "Juni": 6, "Juli": 7, "Agustus": 8,
"September": 9, "Oktober": 10, "November": 11,
"Desember": 12
}
df arima = data.copy ()
df arima['month'] = df arima['Bulan'].map (month mapping)
df arima['year'] = df arima['Tahun'].astype (int)
df arima['date'] = pd.to_datetime (
df arimal[['year', 'month']].assign (Day=1),
errors="'coerce'
)
df arima =
pd.DataFrame (df arima.groupby ('date') ['Tonase'].sum())

ts data = df arima(['Tonase']

.u):

history id})

.n):

st.write("Hasil ADF Test sebelum differencing:")

adf test (ts_data)

if adfuller(ts data) [1] > 0.05:

ts data = ts data.diff () .dropna/()
st.write(
adf test (ts data)
train size = int(len(ts_data) * 0.95)
train, test =

prdrq:9, 5,%4
model = ARIMA (train, order=(p,
model fit = model.fit ()

d, q))

"\nHasil ADF Test setelah differencing:")

ts datal:train size], ts dataltrain size:]

forecast = model fit.forecast (steps=len(test))

forecast series = pd.Series (forecast,

mae = mean absolute error (test,
mape =
100

rmse = np.sqrt(mean squared error (test,

st.write ("\nEvaluasi Model:")

(
st.write (f"MAE: {mae}")
st.write (f"MAPE: {mape}%")
st.write (f"RMSE: {rmse}")

index=test.index)

forecast series)
np.mean (np.abs ((test - forecast series)

/ test)) *

forecast series))

N




full series = pd.concat([train, test])
forecast series full = pd.concat([train, forecast series])

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot (forecast series full, label="Forecast",
color='"red")

ax.plot(train, label="Actual", color='blue')

ax.set title("ARIMA Model - Actual vs Forecast")

ax.set xlabel (None)

ax.set ylabel ("Tonase")

ax.legend()

ax.grid()

st.pyplot (fig)
return fig

def adf test(series):
result = adfuller (series)
st.write ("ADF Test Statistic:", result[0])
st.write ("p-value:", result[l])
st.write ("Critical Values:")
for key, value in result[4].items() :
st.write (£" {key}t: {value}l™)
if result[l] <= 0.05:
st.write ("Data stasioner (HO ditolak).")
else:
st.write("Data tidak stasioner (HO diterima).")

def kmeans prediction(data):
with st.spinner ("Membuat prediksi KMeans..."):
data = data.copy ()
features N ['kota kabupaten code', 'tahun code',
'bulan code', 'Tonase']
X = data[features]
scaler = StandardScaler ()
X scaled = scaler.fit transform(X)

inertia = []

k range = range (2, 11)

for k in k_range:
kmeans = KMeans (n clusters=k, random state=42)
kmeans.

fit (X scaled)
inertia.append (kmeans.inertia )

fig elbow, ax = plt.subplots(figsize=(8, 5))
ax.plot (k range, inertia, marker='o')

ax.set title("Elbow Method")

ax.set xlabel ("Number of Clusters")

ax.set ylabel ("Inertia")

ax.set xticks (k_range)

ax.grid()




st.pyplot (fig elbow)

silhouette scores = []
for k in k range:

kmeans = KMeans (n_clusters=k, random state=42)
kmeans.fit (X scaled)

labels = kmeans.labels

score = silhouette score(X scaled, labels)

silhouette scores.append(score)

fig silhoute, ax = plt.subplots(figsize=(8, 5))

ax.plot (k_range, silhouette scores, marker="'o
color='orange')

ax.set title("Silhouette Score")

ax.set xlabel ("Number of Clusters")

ax.set ylabel ("Silhouette Score")

ax.set xticks (k_range)

ax.grid()

st.pyplot (fig silhoute)

optimal k = k range[np.argmax(silhouette scores)]
st.write (f'Jumlah cluster optimal berdasarkan Silhouette
Score: {optimal k}')

kmeans optimal = KMeans (n_clusters=optimal k,
random state=42)

kmeans optimal.fit (X scaled)

data['cluster'] = kmeans optimal.labels

# Define waste categories based on Tonase
def categorize waste(t):
if t > 5000:
return 'Large'
elif t > 2000:
return 'Medium'
else:
return 'Small'

data['Waste Category'] =
data['Tonase'].apply(categorize waste)

# Create a summary table for cities with their waste
categories and tonnage
summary table = datal[['Kota / Kabupaten', 'Waste Category',

'Tonase']].copy ()
summary table = summary table.groupby(['Kota / Kabupaten',
'Waste Category']) .agg(
Total Tonase=('Tonase', 'sum')

) .reset index()

st.subheader ("City Waste Summary")
st.dataframe (summary table)

# Visualize the clusters
pca = PCA(n_components=2)




X pca = pca.fit transform(X scaled)

fig, ax = plt.subplots(figsize=(10, 5))

scatter = ax.scatter (X pcal:, 01, X pcal:, 171,
c=data['cluster'], cmap='viridis')

ax.set title('KMeans Clustering Visualization')

ax.set xlabel ('PCA Component 1'")

ax.set ylabel ('PCA Component 2'")

plt.colorbar (scatter, ax=ax, label='Cluster')

st.pyplot (fiqg)

return fig elbow, fig silhoute, fig, summary table

def main () :
if 'logged in' not in st.session_state:
st.session state['logged in'] = False
if 'role' not in st.session_state:
st.session state['role'] = None

if not st.session_state['logged in']:

login ()
else:
st.sidebar.title ("Navigasi")
page = st.sidebar.radio("Pilih Halaman", ["Data", "Time",

"Area", "Admin", "Log Out"])

if page == "Admin" and st.session state['role'] == "admin":
st.title ("User Management")
user to manage = st.selectbox ("Pilih User untuk

Dikelola", ["upst", "psm"])
action = st.selectbox ("Pilih Aksi", ["Add User", "Edit
User", "Delete User"])

if action == "Add User":
new username = st.text input ("Username")
new password = st.text input ("Password",

type="password")
if st.button ("Add User"):
if add user (new_username, new_password) :
st.success ("User berhasil ditambahkan!™)
else:
st.error ("User sudah ada!")

elif action == "Edit User":
edit username = user_ to manage
new password = st.text input ("New Password",

type="password")
if st.button("Edit User"):
if edit user (edit username, new password) :
st.success ("User berhasil diedit!")
else:
st.error ("User tidak ditemukan!")

elif action == "Delete User":
delete username = user_ to manage
if st.button("Delete User"):

Q




if delete user (delete username) :
st.success ("User berhasil dihapus!")
else:
st.error ("User tidak ditemukan!")

elif page == "Data":
st.title("Data XLS")
uploaded file = st.file uploader ("Upload XLs",
type="xlsx")

if uploaded file is not None:
data = pd.read excel (uploaded file)

df = data.applymap (lambda X: xX.strip () if
isinstance (x, str) else x)

df = df.applymap(lambda x: x.capitalize() if
isinstance (x, str) else x)

df = df[['Kota / Kabupaten', 'Tahun', 'Bulan',
'Tonase']]

df = df[(df['Kota / Kabupaten'].isna() == False) &
(df ['Kota / Kabupaten'] != 'Lembaga')]

df = df[(df['Tonase'] >= 100) & (df['Tonase'] <=
10000) 1]

encoder = LabelEncoder ()

df ['kota kabupaten code'] =
encoder.fit transform(df['Kota / Kabupaten'])

df ['tahun code'] =
encoder.fit transform(df['Tahun'])

df['bulan code'] =
encoder.fit transform(df['Bulan'])

save data(collection visualisasi, df)
st.session state['data loaded'] = True
st.subheader ("Dataset Head")
st.write (df.head())
save history(df.head(),

collection name="visualisasi")

total rows =
collection visualisasi.count documents ({})
st.write (f"Total data saat ini: **{total rows}
baris**")
if st.button ("Kosongkan Collection Visualisasi"):
clear collection(collection visualisasi)
st.rerun|()

st.title("Riwayat Visualisasi")
history = load history('visualisasi')
if history.empty:
st.warning ("Belum ada riwayat visualisasi.")
else:
if st.button ("Kosongkan Riwayat") :

delete history by collection name ("visualisasi")
st.rerun ()




for index, row in history.iterrows () :
st.write(f"{row['timestamp']} -
{row['collection name']}")
coll, col2 = st.columns([1, 11)
with coll:
if st.button(f"Lihat Hasil {row[' id']}"):
st.dataframe (row['data'] ['data 1'])
with col2:
if st.button(f"Hapus {row[' id']}"):
delete history(row[' id'])
st.success (f"Riwayat {row[' id']}
berhasil dihapus")
time.sleep (1)
st.rerun ()

elif page == "Time" and st.session state['role'] == "user"
and st.session state['username'] == "upst":
if 'data’ not in st.session state or not
st.session state.get('data loaded', False):
data = load data(collection visualisasi)
st.session state['data'] = data
st.session state['data loaded'] = True
data = st.session state['data'].copy()

if st.button ("Tampilkan Prediksi ARIMA") :
plt = arima prediction (data)
save history(plt, collection name="arima")

st.title ("Riwayat Prediksi ARIMA")
history = load history('arima')
if history.empty:
st.warning ("Belum ada riwayat prediksi.")
else:
if st.button ("Kosongkan Riwayat") :
delete history by collection name ("arima")
st.rerun ()

for index, row in history.iterrows () :
st.write (f"{row['timestamp']} -
{row['collection name']}")
coll = st.columns(l) # Create one column
with coll[0]: # Use the first (and only) column
if st.button (f"Lihat Hasil {row[' id']}"):
if '"fig 1' in row['data']:
fig base64 = row['data']['fig 1']

show image from history(fig base64)

elif page == "Area" and st.session_state['role'] == "user"
and st.session state['username'] == "psm":
if 'data’ not in st.session_ state or not
st.session_state.get('data loaded', False):
data = load data(collection visualisasi)




st.session_state['data'] = data
st.session state['data loaded'] = True

data = st.session state['data'].copy()

if st.button("Tampilkan Prediksi KMeans"):
fig elbow, fig silhoute, fig, cluster summary =
kmeans prediction (data)
save history(fig, fig elbow, fig silhoute,
cluster summary, collection name="kmeans")

st.title ("Riwayat Prediksi KMeans")
history = load history('kmeans')
if history.empty:
st.warning ("Belum ada riwayat prediksi KMeans.")
else:
if st.button ("Kosongkan Riwayat"):
delete history by collection name ("kmeans")
st.rerun ()

for index, row in history.iterrows/() :
st.write(f"{row['timestamp']} -
{row['collection name']}")

coll, col2 = st.columns([1, 171)
with coll:

if st.button(f"Lihat Hasil {row[' id']}"):

if '"fig 1' in row['data']:
fig base64 = row['data']l['fig 1']

show image from history(fig base64)
if 'fig 2' in row['data']:
elbow fig base64 =
row['data']['fig 2']

show image from history(elbow fig base64)
if 'fig 3' in row['data']:
elbow fig base64 =
row['data']['fig 3']

show _image from history(elbow fig base64)
if 'data 4' in row['data']:

df =
pd.DataFrame (row['data'] ['data 4'])
st.dataframe (df)
with col2:
if st.button (f"Hapus {row[' id']}"):
delete history(row[' id'])
st.success (f"Riwayat {row[' id']}

berhasil dihapus")
time.sleep (1)
st.rerun ()

elif page == "Log Out":
st.session_state['logged in'] = False
st.session_state['role'] = None

T




st.session_state['username'] = None
st.rerun ()




