DAFTAR LAMPIRAN

Lampiran 1. Surat Keterangan Bebas Plagiasi

UNIVERSITAS DARMA PERSADA
UPT PERPUSTAKAAN
Gedung Rektorat Lantai 3,
JI.Taman Malaka Selatan, Pondok Kelapa — Jakarta Timur 13450

SURAT KETERANGAN
HASIL PENGECEKAN TURNITIN

UPT Perpustakaan Universitas Darma Persada menerangkan telah selesai melakukan
pemeriksaan duplikasi/similarity menggunakan perangkat lunak Turnitin terhadap hasil karya
sebagai berikut:

Judul : Implementasi Datamining Untuk Mendukung Program Reduksi
Sampah Di Daerah Khusus Jakarta Dengan Algoritma Time Series dan K-Means Clustering
Penulis : Muhammad Kirisna Adiputro

NIM : 2019230157

Tgl pemeriksaan : 21 Februari 2025

Dengan hasil Tingkat Kesamaan (similarity index) 19%

Demikian Surat Keterangan kami buat, untuk dipergunakan sebagaimana mestinya.

Jakarta, 21 Februari 2025

Ka.UPT Perpustakaan Unsada

Yus Rusmiyati, SS., MM

Batas maksimal similarity 30% untuk Fakultas Sastra dan Ekonomi

Batas maksimal similarity 25% untuk Fakultas Teknik, Kelautan
dan Pasca Sarjana

Lampiran 2. Hasil Turnitin

(ﬂ turnitin Page 20f64- integrity Overview Submission ID trn:oid:::1:3161546043

19% Overall Similarity

The combined total of all matches, induding overlapping sources, for each database.

Top Sources

17% @ Internet sources
9% ME Publications
0% A& Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review
Our system’s algorithms look deeply at a document for any inconsistencies that
No suspicious text manipulations found. would set it apart from a normal submission. If we notice something strange, we flag

it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

@

id.123dok.com 1%
° Publication

Veren Nita Permatasari, Raisah Fajri Aula, Yuma Akbar, Aditya Zakaria Hidayat. "... <1%
e

p i o g d. ..:.‘:.-;... aeid <1%
Publication

Jodi Hendrawan, Ika Devi Perwitasari, Zata Hasyyati, Deby Safitri Hasanah. "Mode... <1%
text-id.123dok.com <1%
@

smart.stmikplk.ac.id <1%
-

etheses.uin-malang.ac.id <1%
o

kc.umn.ac.id <1%
e

ejournal.unibba.ac.id <1%
e

doku.pub <1%
. J

repository.unimugo.ac.id <1%
F_I turnitin Page 3 of 54 - Integrity Overview Submission ID trn:oid::1:3161546043

@

ejournal.itn.ac.id

@ e

laakfkb.telkomuniversity.ac.id

€ e

repository.fe.unj.ac.id

@ o

bkddkijakarta.go.id

@ o

dspace.uii.ac.id

@ o

www.kompasiana.com

€ ication

Marlen T Lesnussa, Melianus Salakory, Edward G Tetelepta. "Waste Management ...

digilib.itb.ac.id

Asri Fornika Sari, Seno D Panjaitan, Bomo W Sanjaya. "Optimasi Pemantauan Kua...

o Publication

Admin Teika, Yusran Timur Samuel, Frengky Simbolon. "Perancangan Aplikasi Un...

emm

Sri Lestari, Maryana Febryanti. "Analisis Sentimen Mengenai Produk Inovasi Invis...

o Publication

Zahra Purwanti, Sugiyono. "Pemodelan Text Mining untuk Analisis Sentimen Ter...

@

eprints.upj.ac.id

r'_] turnitin Paoeof 64 - integrity Overview

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

1%

<1%

<1%

Submission 1D treoid= 13161546043

('!-.l turnitin rege sof 64- Integrity Overview

a Internet

id.scribd.com

library.binus.ac.id

28 Internet

simki.unpkediri.ac.id

S

swa.co.id

. P

vegiwilandari.wordpress.com

o Internet

lib.ui.ac.id

o Internet
jogodebola.net
o Internet
ailima.co.id

a Internet
geograf.id

e Internet

6blaab6e-13bb-4ed4-a7fe-e6007b3f5822.filesusr.com

36 Publication

Abd Azis, Sutisna. “Penerapan Data Mining untuk Menentukan Ketersediaan Sto...

o Internet

gaya.tempo.co

a Internet

repository.itsb.ac.id

@ -

rinjani.unitri.ac.id

F_l turnitin reue 5of 64 integrity Overview

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Submission ID trnioid:=1:3161546043

Submission 1D trmooid:=1:3161 546043

5"_-] turnitin Page 6 of 64 - Integrity Overview

Publication

Amrizal Novianto, Fadil Indra Sanjaya. "PERANCANGAN SISTEM INFORMASI UNTU...

Pubuatlon

Iksan Mule. "Peramalan Jumlah Penduduk Miskin di Provinsi Maluku Tahun 2021 ...

© oo

NAUFAL ARIF HIDAYATULLAH, Willy Prihartono, Fathur Rohman. "CLUSTERING PE...

omm

Novri Hadinata, Kurniawan Kurniawan. "ANALISIS POLA PEMBELIAN PRODUK MA...

Internet

berbagireferensiilmiah.blogspot.com

o Internet

ejournal.ust.ac.id

@

eprints.uad.ac.id

©Q o

fkom.almaata.ac.id

©Q o

academic-accelerator.com

©Q -

dokumen.tips

[, J—

es.scribd.com

°Inumet

naniksuharti.wordpress.com

52 Internet

repository.maranatha.edu

Internet

www.ijettjournal.org

ﬂ turnitin Peoe 6 of 64 Integrity Overview

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Submission ID trn:oid==1:3161546043

Submission ID trrooid=:1:3161546043

ﬂ turnitin Pege7of 64 integrity Overview

Internet

www.kemenperin.go.id

Mkaﬂen

Dimas Bayu Anjasmara, Mochamad Alfan Rosid, Ade Eviyanti. “Implementasi Fitu...

mauon

Susy Katarina Sianturi, Dina Satriani Fansuri, Wiwin Najmiatul Aini. "Algoritma Ap...

.

contohlaporansusunanpkl.blogspot.com

©Q -

dias.library.tuc.gr

lnumu

dspace.umkt.ac.id

60 Internet

ejurnal.univbatam.ac.id

@ o

id.parkwaycancercentre.com

o

jimfeb.ub.ac.id

©Q o

kmbappeda.jakarta.go.id

o

ojs.unigal.ac.id

° Internet

repository.trisakti.ac.id

©Q e

www.coursehero.com

ruwuum

Andhyagis Suatrat, Daniel A Sihasale. "Community Behavior in Waste Disposal Al...

FJ turnitin Page 7 of 64 integrity Overview

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Submission 1D trmeoid=;1:3161546043

Submission 1D trnioid:1:3161546043

El-] turnitin Page 8 of 64 - Integrity Overview

a Internet

adoc.pub

—

akademik.unsoed.ac.id

e Internet

de.scribd.com

-

diyanaeunhyuk.blogspot.com

© o

o

guru-id.github.io

Internet

journal.unj.ac.id

75 Internet

mediaindonesia.com

Internet

repository.its.ac.id

o Internet

valexeev.yolasite.com

Internet

wahjoecyber.blogspot.com

www.hdewcameras.co.uk

Publication

Ferdiansyah Aditya Soliata, Ryan Randy Suryono. "Sistem Otomatisasi Pengairan ...

o Publication

Zaid Romegar Mair, Helen Yunita Sari. "Aplikasi Kasir Pada Adibah Boutique Berb...

?lq turn|t|n Page 8 of 64 - Integrity Overview

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Submission 1D trn:oid:1:3161546043

Submission ID trn:oid::1:3161546043

plturnitin ragesorss- ey overvew

a2 Publication

Herdy Hardana, Ruben Edward, Sri Mardiyati. "Perancangan Sistem Informasi Ad...

Publication

Meri Fitriani, Gigih Forda Nama, Mardiana Mardiana. "Implementasi Association ...

pubbcaton

Muhammad Syani, Tundo, Sugiyono, Tri Wahyudi. "Klasterisasi Penggunaan Ban...

o Publication

Royani Wulandari. “Strategi Berkelanjutan dalam Mengatasi Krisis Sampah Di Kot...

a Publication

Veri Arinal, Irma Rusmarhadi. "Implementasi Data Mining Untuk Menentukan Str...

Internet

repository.ub.ac.id

g'-.| turnitin Page 9 of 64- integrity Overview

<1%

<1%

<1%

<1%

<1%

<1%

Submission 1D trmcoid=:1:3161546043

Submission 1D trrcoid:=:1:3161546043

Lampiran 3. Codingan Python

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import io

import base6d

import time

from pymongo import MongoClient, errors

from statsmodels.tsa.arima.model import ARIMA

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler, LabelEncoder
from datetime import datetime

from sklearn.metrics import silhouette score,
calinski harabasz score

from sklearn.decomposition import PCA

import numpy as np

from statsmodels.tsa.stattools import adfuller

from sklearn.metrics import mean squared error

from sklearn.metrics import mean absolute error

import itertools

MongoDB connection with error handlingecho "# ForecastApp" >>
README . md
try:

client =
MongoClient ("mongodb+srv://krisna:krisna@cluster0.3maollf.mongodb.
net/?retryWrites=trues&w=majority&appName=ClusterQ")

db = client['dbkrisna']

collection visualisasi = db['visualisasi']

collection history = db['history']
except errors.ConnectionError as e:

st.error ("Could not connect to MongoDB. Please check your
connection settings.")

st.stop() # Stop the app if the connection fails

User management

users = {
"admin": {"password": "admin", "role": "admin"},
"upst": {"password": "admin", "role": "user"},
"psm": {"password": "admin", "role": "user"}

def add user (username, password) :
if username not in users:
users[username] = {"password": password, "role": "user"}
return True
return False

def edit user (username, new password=None) :
if username in users:
if new password:
users[username] ["password"] = new password

return True
return False

def delete user (username) :
if wusername in users and username != "admin": # Prevent
deletion of admin
del users[username]
return True
return False

def login():
st.title ("Login")
username = st.text input ("Username")
password = st.text input ("Password", type="password")
if st.button("Login"):
if username 1in users and users|[username] ["password"] ==
password:
st.session state['logged in'] = True
st.session _state['role'] = users[username] ["role"]
st.session state['username'] = username
st.rerun ()
else:

st.error ("Username atau password salah")

def clear collection(collection):
with st.spinner ("Mengosongkan collection..."):
collection.delete many({})
st.success ("Collection berhasil dikosongkan!")

def delete history by collection name(collection name) :
with st.spinner (f"Menghapus semua riwayat
'{collection name}'..."):
collection history.delete many({"collection name":
collection name})

def load data(collection):

progress bar = st.progress(0)
status_text = st.empty ()

cursor = collection.find()

data list = []

total = collection.count documents ({})
count = 0

for doc in cursor:
data list.append (doc)
count += 1

progress = int ((count / total) * 100)
progress_bar.progress (progress)
status_text.text (f"Memuat data... {progress}3")

time.sleep (0.01)

progress bar.empty ()

status_text.text ("Memuat data selesail")
data = pd.DataFrame (data list)

return data

def save data(collection, data):
collection.delete many({})

progress bar = st.progress(0)
status_text = st.empty()

records = data.to dict('records')
total = len(records)

batch size = 10

for i in range (0, total, batch size):
batch = records[i:itbatch size]
collection.insert many (batch)
progress = int (((i + len(batch)) / total) * 100)
progress bar.progress (progress)
status_text.text (f"Menyimpan data... {progress}3")
time.sleep(0.01)

progress bar.empty ()
status_text.success ("Data berhasil diunggah!")

def save history(*args, collection name) :
with st.spinner ("Menyimpan riwayat data..."):
history data = {}
for i, data in enumerate (args):
if isinstance(data, plt.Figure):
img stream = io.BytesIO()

data.savefig(img stream, format='png')
img stream.seek (0)

img data =
base64.b64encode (img_stream.read()) .decode ('utf-8")
history data[f"fig {i+1}"] = img data
else:

history data[f"data {i+1}"] =
data.to _dict('records')

history = {

"collection name": collection name,
"data": history data,
"timestamp": datetime.now () .strftime ("%Y-%m-%d

o\°

H:

o\°

M:

o\°

S")
}

collection history.insert one (history)

def load history(collection name=None) :
with st.spinner ("Memuat riwayat data..."):
if collection name:
history =
pd.DataFrame (list (collection history.find({"collection name":
collection name})))
else:
history =
pd.DataFrame (list (collection history.find()))
return history

def delete history(history id):

with st.spinner ("Menghapus riwayat data..
collection history.delete one({' id':

def show image from history(img data):
img = base64.b64decode (img data)

st.image (img, use container width=True)

def arima prediction(data) :

with st.spinner ("Membuat prediksi ARIMA..

month mapping = {

"Januari": 1, "Februari": 2, "Maret": 3, "April": 4,
"Mei": 5, "Juni": 6, "Juli": 7, "Agustus": 8,
"September": 9, "Oktober": 10, "November": 11,
"Desember": 12
}
df arima = data.copy ()
df arima['month'] = df arima['Bulan'].map (month mapping)
df arima['year'] = df arima['Tahun'].astype (int)
df arima['date'] = pd.to_datetime (
df arimal[['year', 'month']].assign (Day=1),
errors="'coerce'
)
df arima =
pd.DataFrame (df arima.groupby ('date') ['Tonase'].sum())

ts data = df arima(['Tonase']

.u):

history id})

.n):

st.write("Hasil ADF Test sebelum differencing:")

adf test (ts_data)

if adfuller(ts data) [1] > 0.05:

ts data = ts data.diff () .dropna/()
st.write(
adf test (ts data)
train size = int(len(ts_data) * 0.95)
train, test =

prdrq:9, 5,%4
model = ARIMA (train, order=(p,
model fit = model.fit ()

d, q))

"\nHasil ADF Test setelah differencing:")

ts datal:train size], ts dataltrain size:]

forecast = model fit.forecast (steps=len(test))

forecast series = pd.Series (forecast,

mae = mean absolute error (test,
mape =
100

rmse = np.sqrt(mean squared error (test,

st.write ("\nEvaluasi Model:")

(
st.write (f"MAE: {mae}")
st.write (f"MAPE: {mape}%")
st.write (f"RMSE: {rmse}")

index=test.index)

forecast series)
np.mean (np.abs ((test - forecast series)

/ test)) *

forecast series))

N

full series = pd.concat([train, test])
forecast series full = pd.concat([train, forecast series])

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot (forecast series full, label="Forecast",
color='"red")

ax.plot(train, label="Actual", color='blue')

ax.set title("ARIMA Model - Actual vs Forecast")

ax.set xlabel (None)

ax.set ylabel ("Tonase")

ax.legend()

ax.grid()

st.pyplot (fig)
return fig

def adf test(series):
result = adfuller (series)
st.write ("ADF Test Statistic:", result[0])
st.write ("p-value:", result[l])
st.write ("Critical Values:")
for key, value in result[4].items() :
st.write (£" {key}t: {value}l™)
if result[l] <= 0.05:
st.write ("Data stasioner (HO ditolak).")
else:
st.write("Data tidak stasioner (HO diterima).")

def kmeans prediction(data):
with st.spinner ("Membuat prediksi KMeans..."):
data = data.copy ()
features N ['kota kabupaten code', 'tahun code',
'bulan code', 'Tonase']
X = data[features]
scaler = StandardScaler ()
X scaled = scaler.fit transform(X)

inertia = []

k range = range (2, 11)

for k in k_range:
kmeans = KMeans (n clusters=k, random state=42)
kmeans.

fit (X scaled)
inertia.append (kmeans.inertia)

fig elbow, ax = plt.subplots(figsize=(8, 5))
ax.plot (k range, inertia, marker='o')

ax.set title("Elbow Method")

ax.set xlabel ("Number of Clusters")

ax.set ylabel ("Inertia")

ax.set xticks (k_range)

ax.grid()

st.pyplot (fig elbow)

silhouette scores = []
for k in k range:

kmeans = KMeans (n_clusters=k, random state=42)
kmeans.fit (X scaled)

labels = kmeans.labels

score = silhouette score(X scaled, labels)

silhouette scores.append(score)

fig silhoute, ax = plt.subplots(figsize=(8, 5))

ax.plot (k_range, silhouette scores, marker="'o
color='orange')

ax.set title("Silhouette Score")

ax.set xlabel ("Number of Clusters")

ax.set ylabel ("Silhouette Score")

ax.set xticks (k_range)

ax.grid()

st.pyplot (fig silhoute)

optimal k = k range[np.argmax(silhouette scores)]
st.write (f'Jumlah cluster optimal berdasarkan Silhouette
Score: {optimal k}')

kmeans optimal = KMeans (n_clusters=optimal k,
random state=42)

kmeans optimal.fit (X scaled)

data['cluster'] = kmeans optimal.labels

Define waste categories based on Tonase
def categorize waste(t):
if t > 5000:
return 'Large'
elif t > 2000:
return 'Medium'
else:
return 'Small'

data['Waste Category'] =
data['Tonase'].apply(categorize waste)

Create a summary table for cities with their waste
categories and tonnage
summary table = datal[['Kota / Kabupaten', 'Waste Category',

'Tonase']].copy ()
summary table = summary table.groupby(['Kota / Kabupaten',
'Waste Category']) .agg(
Total Tonase=('Tonase', 'sum')

) .reset index()

st.subheader ("City Waste Summary")
st.dataframe (summary table)

Visualize the clusters
pca = PCA(n_components=2)

X pca = pca.fit transform(X scaled)

fig, ax = plt.subplots(figsize=(10, 5))

scatter = ax.scatter (X pcal:, 01, X pcal:, 171,
c=data['cluster'], cmap='viridis')

ax.set title('KMeans Clustering Visualization')

ax.set xlabel ('PCA Component 1'")

ax.set ylabel ('PCA Component 2'")

plt.colorbar (scatter, ax=ax, label='Cluster')

st.pyplot (fiqg)

return fig elbow, fig silhoute, fig, summary table

def main () :
if 'logged in' not in st.session_state:
st.session state['logged in'] = False
if 'role' not in st.session_state:
st.session state['role'] = None

if not st.session_state['logged in']:

login ()
else:
st.sidebar.title ("Navigasi")
page = st.sidebar.radio("Pilih Halaman", ["Data", "Time",

"Area", "Admin", "Log Out"])

if page == "Admin" and st.session state['role'] == "admin":
st.title ("User Management")
user to manage = st.selectbox ("Pilih User untuk

Dikelola", ["upst", "psm"])
action = st.selectbox ("Pilih Aksi", ["Add User", "Edit
User", "Delete User"])

if action == "Add User":
new username = st.text input ("Username")
new password = st.text input ("Password",

type="password")
if st.button ("Add User"):
if add user (new_username, new_password) :
st.success ("User berhasil ditambahkan!™)
else:
st.error ("User sudah ada!")

elif action == "Edit User":
edit username = user_ to manage
new password = st.text input ("New Password",

type="password")
if st.button("Edit User"):
if edit user (edit username, new password) :
st.success ("User berhasil diedit!")
else:
st.error ("User tidak ditemukan!")

elif action == "Delete User":
delete username = user_ to manage
if st.button("Delete User"):

Q

if delete user (delete username) :
st.success ("User berhasil dihapus!")
else:
st.error ("User tidak ditemukan!")

elif page == "Data":
st.title("Data XLS")
uploaded file = st.file uploader ("Upload XLs",
type="xlsx")

if uploaded file is not None:
data = pd.read excel (uploaded file)

df = data.applymap (lambda X: xX.strip () if
isinstance (x, str) else x)

df = df.applymap(lambda x: x.capitalize() if
isinstance (x, str) else x)

df = df[['Kota / Kabupaten', 'Tahun', 'Bulan',
'Tonase']]

df = df[(df['Kota / Kabupaten'].isna() == False) &
(df ['Kota / Kabupaten'] != 'Lembaga')]

df = df[(df['Tonase'] >= 100) & (df['Tonase'] <=
10000) 1]

encoder = LabelEncoder ()

df ['kota kabupaten code'] =
encoder.fit transform(df['Kota / Kabupaten'])

df ['tahun code'] =
encoder.fit transform(df['Tahun'])

df['bulan code'] =
encoder.fit transform(df['Bulan'])

save data(collection visualisasi, df)
st.session state['data loaded'] = True
st.subheader ("Dataset Head")
st.write (df.head())
save history(df.head(),

collection name="visualisasi")

total rows =
collection visualisasi.count documents ({})
st.write (f"Total data saat ini: **{total rows}
baris**")
if st.button ("Kosongkan Collection Visualisasi"):
clear collection(collection visualisasi)
st.rerun|()

st.title("Riwayat Visualisasi")
history = load history('visualisasi')
if history.empty:
st.warning ("Belum ada riwayat visualisasi.")
else:
if st.button ("Kosongkan Riwayat") :

delete history by collection name ("visualisasi")
st.rerun ()

for index, row in history.iterrows () :
st.write(f"{row['timestamp']} -
{row['collection name']}")
coll, col2 = st.columns([1, 11)
with coll:
if st.button(f"Lihat Hasil {row[' id']}"):
st.dataframe (row['data'] ['data 1'])
with col2:
if st.button(f"Hapus {row[' id']}"):
delete history(row[' id'])
st.success (f"Riwayat {row[' id']}
berhasil dihapus")
time.sleep (1)
st.rerun ()

elif page == "Time" and st.session state['role'] == "user"
and st.session state['username'] == "upst":
if 'data’ not in st.session state or not
st.session state.get('data loaded', False):
data = load data(collection visualisasi)
st.session state['data'] = data
st.session state['data loaded'] = True
data = st.session state['data'].copy()

if st.button ("Tampilkan Prediksi ARIMA") :
plt = arima prediction (data)
save history(plt, collection name="arima")

st.title ("Riwayat Prediksi ARIMA")
history = load history('arima')
if history.empty:
st.warning ("Belum ada riwayat prediksi.")
else:
if st.button ("Kosongkan Riwayat") :
delete history by collection name ("arima")
st.rerun ()

for index, row in history.iterrows () :
st.write (f"{row['timestamp']} -
{row['collection name']}")
coll = st.columns(l) # Create one column
with coll[0]: # Use the first (and only) column
if st.button (f"Lihat Hasil {row[' id']}"):
if '"fig 1' in row['data']:
fig base64 = row['data']['fig 1']

show image from history(fig base64)

elif page == "Area" and st.session_state['role'] == "user"
and st.session state['username'] == "psm":
if 'data’ not in st.session_ state or not
st.session_state.get('data loaded', False):
data = load data(collection visualisasi)

st.session_state['data'] = data
st.session state['data loaded'] = True

data = st.session state['data'].copy()

if st.button("Tampilkan Prediksi KMeans"):
fig elbow, fig silhoute, fig, cluster summary =
kmeans prediction (data)
save history(fig, fig elbow, fig silhoute,
cluster summary, collection name="kmeans")

st.title ("Riwayat Prediksi KMeans")
history = load history('kmeans')
if history.empty:
st.warning ("Belum ada riwayat prediksi KMeans.")
else:
if st.button ("Kosongkan Riwayat"):
delete history by collection name ("kmeans")
st.rerun ()

for index, row in history.iterrows/() :
st.write(f"{row['timestamp']} -
{row['collection name']}")

coll, col2 = st.columns([1, 171)
with coll:

if st.button(f"Lihat Hasil {row[' id']}"):

if '"fig 1' in row['data']:
fig base64 = row['data']l['fig 1']

show image from history(fig base64)
if 'fig 2' in row['data']:
elbow fig base64 =
row['data']['fig 2']

show image from history(elbow fig base64)
if 'fig 3' in row['data']:
elbow fig base64 =
row['data']['fig 3']

show _image from history(elbow fig base64)
if 'data 4' in row['data']:

df =
pd.DataFrame (row['data'] ['data 4'])
st.dataframe (df)
with col2:
if st.button (f"Hapus {row[' id']}"):
delete history(row[' id'])
st.success (f"Riwayat {row[' id']}

berhasil dihapus")
time.sleep (1)
st.rerun ()

elif page == "Log Out":
st.session_state['logged in'] = False
st.session_state['role'] = None

T

st.session_state['username'] = None
st.rerun ()

