
C

DAFTAR LAMPIRAN

Lampiran 1. Surat Keterangan Bebas Plagiasi

D

Lampiran 2. Hasil Turnitin

E

F

G

H

I

J

K

Lampiran 3. Codingan Python

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import io

import base64

import time

from pymongo import MongoClient, errors

from statsmodels.tsa.arima.model import ARIMA

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler, LabelEncoder

from datetime import datetime

from sklearn.metrics import silhouette_score,

calinski_harabasz_score

from sklearn.decomposition import PCA

import numpy as np

from statsmodels.tsa.stattools import adfuller

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

import itertools

MongoDB connection with error handlingecho "# ForecastApp" >>

README.md

try:

 client =

MongoClient("mongodb+srv://krisna:krisna@cluster0.3mao11f.mongodb.

net/?retryWrites=true&w=majority&appName=Cluster0")

 db = client['dbkrisna']

 collection_visualisasi = db['visualisasi']

 collection_history = db['history']

except errors.ConnectionError as e:

 st.error("Could not connect to MongoDB. Please check your

connection settings.")

 st.stop() # Stop the app if the connection fails

User management

users = {

 "admin": {"password": "admin", "role": "admin"},

 "upst": {"password": "admin", "role": "user"},

 "psm": {"password": "admin", "role": "user"}

}

def add_user(username, password):

 if username not in users:

 users[username] = {"password": password, "role": "user"}

 return True

 return False

def edit_user(username, new_password=None):

 if username in users:

 if new_password:

 users[username]["password"] = new_password

L

 return True

 return False

def delete_user(username):

 if username in users and username != "admin": # Prevent

deletion of admin

 del users[username]

 return True

 return False

def login():

 st.title("Login")

 username = st.text_input("Username")

 password = st.text_input("Password", type="password")

 if st.button("Login"):

 if username in users and users[username] ["password"] ==
password:

 st.session_state['logged_in'] = True

 st.session_state['role'] = users[username]["role"]

 st.session_state['username'] = username

 st.rerun()

 else:

 st.error("Username atau password salah")

def clear_collection(collection):

 with st.spinner("Mengosongkan collection..."):

 collection.delete_many({})

 st.success("Collection berhasil dikosongkan!")

def delete_history_by_collection_name(collection_name):

 with st.spinner(f"Menghapus semua riwayat

'{collection_name}'..."):

 collection_history.delete_many({"collection_name":

collection_name})

def load_data(collection):

 progress_bar = st.progress(0)

 status_text = st.empty()

 cursor = collection.find()

 data_list = []

 total = collection.count_documents({})

 count = 0

 for doc in cursor:

 data_list.append(doc)

 count += 1

 progress = int((count / total) * 100)

 progress_bar.progress(progress)

 status_text.text(f"Memuat data... {progress}%")

 time.sleep(0.01)

 progress_bar.empty()

 status_text.text("Memuat data selesai!")

 data = pd.DataFrame(data_list)

 return data

M

def save_data(collection, data):

 collection.delete_many({})

 progress_bar = st.progress(0)

 status_text = st.empty()

 records = data.to_dict('records')

 total = len(records)

 batch_size = 10

 for i in range(0, total, batch_size):

 batch = records[i:i+batch_size]

 collection.insert_many(batch)

 progress = int(((i + len(batch)) / total) * 100)

 progress_bar.progress(progress)

 status_text.text(f"Menyimpan data... {progress}%")

 time.sleep(0.01)

 progress_bar.empty()

 status_text.success("Data berhasil diunggah!")

def save_history(*args, collection_name):

 with st.spinner("Menyimpan riwayat data..."):

 history_data = {}

 for i, data in enumerate(args):

 if isinstance(data, plt.Figure):

 img_stream = io.BytesIO()

data.savefig(img_stream, format='png')

 img_stream.seek(0)

 img_data =

base64.b64encode(img_stream.read()).decode('utf-8')

 history_data[f"fig_{i+1}"] = img_data

 else:

 history_data[f"data_{i+1}"] =

data.to_dict('records')

 history = {

 "collection_name": collection_name,

 "data": history_data,

 "timestamp": datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 }

 collection_history.insert_one(history)

def load_history(collection_name=None):

 with st.spinner("Memuat riwayat data..."):

 if collection_name:

 history =

pd.DataFrame(list(collection_history.find({"collection_name":

collection_name})))

 else:

 history =

pd.DataFrame(list(collection_history.find()))

 return history

def delete_history(history_id):

N

 with st.spinner("Menghapus riwayat data..."):

 collection_history.delete_one({'_id': history_id})

def show_image_from_history(img_data):

 img = base64.b64decode(img_data)

 st.image(img, use_container_width=True)

def arima_prediction(data):

 with st.spinner("Membuat prediksi ARIMA..."):

 month_mapping = {

 "Januari": 1, "Februari": 2, "Maret": 3, "April": 4,

 "Mei": 5, "Juni": 6, "Juli": 7, "Agustus": 8,

 "September": 9, "Oktober": 10, "November": 11,

"Desember": 12

 }

 df_arima = data.copy()

 df_arima['month'] = df_arima['Bulan'].map(month_mapping)

 df_arima['year'] = df_arima['Tahun'].astype(int)

 df_arima['date'] = pd.to_datetime(

 df_arima[['year', 'month']].assign(Day=1),

errors='coerce'

)

 df_arima =

pd.DataFrame(df_arima.groupby('date')['Tonase'].sum())

 ts_data = df_arima['Tonase']

 st.write("Hasil ADF Test sebelum differencing:")

 adf_test(ts_data)

 if adfuller(ts_data)[1] > 0.05:

 ts_data = ts_data.diff().dropna()

 st.write("\nHasil ADF Test setelah differencing:")

 adf_test(ts_data)

 train_size = int(len(ts_data) * 0.95)

 train, test = ts_data[:train_size], ts_data[train_size:]

 p, d, q = 9, 5, 4

 model = ARIMA(train, order=(p, d, q))

 model_fit = model.fit()

 forecast = model_fit.forecast(steps=len(test))

 forecast_series = pd.Series(forecast, index=test.index)

 mae = mean_absolute_error(test, forecast_series)

 mape = np.mean(np.abs((test - forecast_series) / test)) *

100

 rmse = np.sqrt(mean_squared_error(test, forecast_series))

 st.write("\nEvaluasi Model:")

 st.write(f"MAE: {mae}")

 st.write(f"MAPE: {mape}%")

 st.write(f"RMSE: {rmse}")

O

 full_series = pd.concat([train, test])

 forecast_series_full = pd.concat([train, forecast_series])

 fig, ax = plt.subplots(figsize=(10, 6))

 ax.plot(forecast_series_full, label="Forecast",

color='red')

 ax.plot(train, label="Actual", color='blue')

 ax.set_title("ARIMA Model - Actual vs Forecast")

 ax.set_xlabel(None)

 ax.set_ylabel("Tonase")

 ax.legend()

 ax.grid()

 st.pyplot(fig)

 return fig

def adf_test(series):

 result = adfuller(series)

 st.write("ADF Test Statistic:", result[0])

 st.write("p-value:", result[1])

 st.write("Critical Values:")

 for key, value in result[4].items():

 st.write(f" {key}: {value}")

 if result[1] <= 0.05:

 st.write("Data stasioner (H0 ditolak).")

 else:

 st.write("Data tidak stasioner (H0 diterima).")

def kmeans_prediction(data):

 with st.spinner("Membuat prediksi KMeans..."):

 data = data.copy()

 features = ['kota_kabupaten_code', 'tahun_code',

'bulan_code', 'Tonase']

 X = data[features]

 scaler = StandardScaler()

 X_scaled = scaler.fit_transform(X)

 inertia = []

 k_range = range(2, 11)

 for k in k_range:

 kmeans = KMeans(n_clusters=k, random_state=42)

 kmeans.

fit(X_scaled)

 inertia.append(kmeans.inertia_)

 fig_elbow, ax = plt.subplots(figsize=(8, 5))

 ax.plot(k_range, inertia, marker='o')

 ax.set_title("Elbow Method")

 ax.set_xlabel("Number of Clusters")

 ax.set_ylabel("Inertia")

 ax.set_xticks(k_range)

 ax.grid()

P

 st.pyplot(fig_elbow)

 silhouette_scores = []

 for k in k_range:

 kmeans = KMeans(n_clusters=k, random_state=42)

 kmeans.fit(X_scaled)

 labels = kmeans.labels_

 score = silhouette_score(X_scaled, labels)

 silhouette_scores.append(score)

 fig_silhoute, ax = plt.subplots(figsize=(8, 5))

 ax.plot(k_range, silhouette_scores, marker='o',

color='orange')

 ax.set_title("Silhouette Score")

 ax.set_xlabel("Number of Clusters")

 ax.set_ylabel("Silhouette Score")

 ax.set_xticks(k_range)

 ax.grid()

 st.pyplot(fig_silhoute)

 optimal_k = k_range[np.argmax(silhouette_scores)]

 st.write(f'Jumlah cluster optimal berdasarkan Silhouette

Score: {optimal_k}')

 kmeans_optimal = KMeans(n_clusters=optimal_k,

random_state=42)

 kmeans_optimal.fit(X_scaled)

 data['cluster'] = kmeans_optimal.labels_

 # Define waste categories based on Tonase

 def categorize_waste(t):

 if t > 5000:

 return 'Large'

 elif t > 2000:

 return 'Medium'

 else:

 return 'Small'

 data['Waste_Category'] =

data['Tonase'].apply(categorize_waste)

 # Create a summary table for cities with their waste

categories and tonnage

 summary_table = data[['Kota / Kabupaten', 'Waste_Category',

'Tonase']].copy()

 summary_table = summary_table.groupby(['Kota / Kabupaten',

'Waste_Category']).agg(

 Total_Tonase=('Tonase', 'sum')

).reset_index()

 st.subheader("City Waste Summary")

 st.dataframe(summary_table)

 # Visualize the clusters

 pca = PCA(n_components=2)

Q

 X_pca = pca.fit_transform(X_scaled)

 fig, ax = plt.subplots(figsize=(10, 5))

 scatter = ax.scatter(X_pca[:, 0], X_pca[:, 1],

c=data['cluster'], cmap='viridis')

 ax.set_title('KMeans Clustering Visualization')

 ax.set_xlabel('PCA Component 1')

 ax.set_ylabel('PCA Component 2')

 plt.colorbar(scatter, ax=ax, label='Cluster')

 st.pyplot(fig)

 return fig_elbow, fig_silhoute, fig, summary_table

def main():

 if 'logged_in' not in st.session_state:

 st.session_state['logged_in'] = False

 if 'role' not in st.session_state:

 st.session_state['role'] = None

 if not st.session_state['logged_in']:

 login()

 else:

 st.sidebar.title("Navigasi")

 page = st.sidebar.radio("Pilih Halaman", ["Data", "Time",

"Area", "Admin", "Log Out"])

 if page == "Admin" and st.session_state['role'] == "admin":

 st.title("User Management")

 user_to_manage = st.selectbox("Pilih User untuk

Dikelola", ["upst", "psm"])

 action = st.selectbox("Pilih Aksi", ["Add User", "Edit

User", "Delete User"])

 if action == "Add User":

 new_username = st.text_input("Username")

 new_password = st.text_input("Password",

type="password")

 if st.button("Add User"):

 if add_user(new_username, new_password):

 st.success("User berhasil ditambahkan!")

 else:

 st.error("User sudah ada!")

 elif action == "Edit User":

 edit_username = user_to_manage

 new_password = st.text_input("New Password",

type="password")

 if st.button("Edit User"):

 if edit_user(edit_username, new_password):

 st.success("User berhasil diedit!")

 else:

 st.error("User tidak ditemukan!")

 elif action == "Delete User":

delete_username = user_to_manage

 if st.button("Delete User"):

R

 if delete_user(delete_username):

 st.success("User berhasil dihapus!")

 else:

 st.error("User tidak ditemukan!")

 elif page == "Data":

 st.title("Data XLS")

 uploaded_file = st.file_uploader("Upload XLS",

type="xlsx")

 if uploaded_file is not None:

 data = pd.read_excel(uploaded_file)

 df = data.applymap(lambda x: x.strip() if

isinstance(x, str) else x)

 df = df.applymap(lambda x: x.capitalize() if

isinstance(x, str) else x)

 df = df[['Kota / Kabupaten', 'Tahun', 'Bulan',

'Tonase']]

 df = df[(df['Kota / Kabupaten'].isna() == False) &

(df['Kota / Kabupaten'] != 'Lembaga')]

 df = df[(df['Tonase'] >= 100) & (df['Tonase'] <=

10000)]

 encoder = LabelEncoder()

 df['kota_kabupaten_code'] =

encoder.fit_transform(df['Kota / Kabupaten'])

 df['tahun_code'] =

encoder.fit_transform(df['Tahun'])

 df['bulan_code'] =

encoder.fit_transform(df['Bulan'])

 save_data(collection_visualisasi, df)

 st.session_state['data_loaded'] = True

 st.subheader("Dataset Head")

 st.write(df.head())

 save_history(df.head(),

collection_name="visualisasi")

 total_rows =

collection_visualisasi.count_documents({})

 st.write(f"Total data saat ini: **{total_rows}

baris**")

 if st.button("Kosongkan Collection Visualisasi"):

 clear_collection(collection_visualisasi)

 st.rerun()

 st.title("Riwayat Visualisasi")

 history = load_history('visualisasi')

 if history.empty:

 st.warning("Belum ada riwayat visualisasi.")

 else:

 if st.button("Kosongkan Riwayat"):

delete_history_by_collection_name("visualisasi")

 st.rerun()

S

 for index, row in history.iterrows():

 st.write(f"{row['timestamp']} -

{row['collection_name']}")

 col1, col2 = st.columns([1, 1])

 with col1:

 if st.button(f"Lihat Hasil {row['_id']}"):

 st.dataframe(row['data']['data_1'])

 with col2:

 if st.button(f"Hapus {row['_id']}"):

 delete_history(row['_id'])

 st.success(f"Riwayat {row['_id']}

berhasil dihapus")

 time.sleep(1)

 st.rerun()

 elif page == "Time" and st.session_state['role'] == "user"

and st.session_state['username'] == "upst":

 if 'data' not in st.session_state or not

st.session_state.get('data_loaded', False):

 data = load_data(collection_visualisasi)

 st.session_state['data'] = data

 st.session_state['data_loaded'] = True

 data = st.session_state['data'].copy()

 if st.button("Tampilkan Prediksi ARIMA"):

 plt = arima_prediction(data)

 save_history(plt, collection_name="arima")

 st.title("Riwayat Prediksi ARIMA")

 history = load_history('arima')

 if history.empty:

 st.warning("Belum ada riwayat prediksi.")

 else:
 if st.button("Kosongkan Riwayat"):

 delete_history_by_collection_name("arima")

 st.rerun()

 for index, row in history.iterrows():

 st.write(f"{row['timestamp']} -

{row['collection_name']}")

 col1 = st.columns(1) # Create one column

 with col1[0]: # Use the first (and only) column

 if st.button(f"Lihat Hasil {row['_id']}"):

 if 'fig_1' in row['data']:

fig_base64 = row['data']['fig_1']

show_image_from_history(fig_base64)

 elif page == "Area" and st.session_state['role'] == "user"

and st.session_state['username'] == "psm":

 if 'data' not in st.session_state or not

st.session_state.get('data_loaded', False):

 data = load_data(collection_visualisasi)

T

 st.session_state['data'] = data

 st.session_state['data_loaded'] = True

 data = st.session_state['data'].copy()

 if st.button("Tampilkan Prediksi KMeans"):

 fig_elbow, fig_silhoute, fig, cluster_summary =

kmeans_prediction(data)

 save_history(fig, fig_elbow, fig_silhoute,

cluster_summary, collection_name="kmeans")

 st.title("Riwayat Prediksi KMeans")

 history = load_history('kmeans')

 if history.empty:

 st.warning("Belum ada riwayat prediksi KMeans.")

 else:

 if st.button("Kosongkan Riwayat"):

 delete_history_by_collection_name("kmeans")

 st.rerun()

 for index, row in history.iterrows():

 st.write(f"{row['timestamp']} -

{row['collection_name']}")

 col1, col2 = st.columns([1, 1])

 with col1:

 if st.button(f"Lihat Hasil {row['_id']}"):

 if 'fig_1' in row['data']:

 fig_base64 = row['data']['fig_1']

show_image_from_history(fig_base64)

 if 'fig_2' in row['data']:

 elbow_fig_base64 =

row['data']['fig_2']

show_image_from_history(elbow_fig_base64)

 if 'fig_3' in row['data']:

 elbow_fig_base64 =

row['data']['fig_3']

show_image_from_history(elbow_fig_base64)

 if 'data_4' in row['data']:

 df =

pd.DataFrame(row['data']['data_4'])

 st.dataframe(df)

 with col2:

 if st.button(f"Hapus {row['_id']}"):

 delete_history(row['_id'])

 st.success(f"Riwayat {row['_id']}

berhasil dihapus")

 time.sleep(1)

 st.rerun()

 elif page == "Log Out":

 st.session_state['logged_in'] = False

 st.session_state['role'] = None

U

 st.session_state['username'] = None

 st.rerun()

if name == "__main__":

 main()

