
83

LAMPIRAN

Surat Hasil Turnitin

84

Kode program cluster.py

1. import streamlit as st

2. import pandas as pd

3. import numpy as np

4. import matplotlib.pyplot as plt

5. from sklearn.cluster import KMeans

6. from sklearn.preprocessing import StandardScaler

7. from sklearn.metrics import silhouette_score

8. from io import BytesIO

9. from mpl_toolkits.mplot3d import Axes3D

10. from utils import create_connection # Impor fungsi

koneksi ke database

11. # Fungsi untuk memuat data dari database

12. def load_data_from_database():

13. conn = create_connection() # Membuka koneksi

14. query = "SELECT * FROM wilayah_banjir"

15. data = pd.read_sql(query, conn)

16. conn.close() # Menutup koneksi setelah pengambilan

data

17. data['Tahun'] = data['Tahun'].astype(str) # Pastikan

kolom Tahun ditampilkan sebagai string

18. return data

19. def show_cluster():

20. st.title("Clustering Wilayah Berdasarkan Dampak

Banjir")

21. # Mengambil data dari database

22. data = load_data_from_database()

23. st.write("Dataset wilayah:")

24. st.dataframe(data) # Menampilkan seluruh data dalam

bentuk tabel interaktif

25. # Langkah 3: Data Understanding

26. st.subheader("Info Dataset")

27. st.write(data.info())

28. st.subheader("Statistik Deskriptif")

29. st.write(data.describe())

30. # Langkah 4: Data Preparation

31. features = data[['Jumlah_Kejadian',

'Menderita_dan_Mengungsi', 'Rumah_Terendam']]

32. data['Menderita_dan_Mengungsi_log'] =

np.log1p(data['Menderita_dan_Mengungsi'])

33. features_transformed = data[['Jumlah_Kejadian',

'Menderita_dan_Mengungsi_log', 'Rumah_Terendam']]

34. # Normalisasi data

35. scaler = StandardScaler()

36. scaled_features =

scaler.fit_transform(features_transformed)

37. # Langkah 5: Menentukan jumlah cluster optimal dengan

metode Elbow

38. st.subheader("Metode Elbow untuk Menentukan Jumlah

Cluster")

85

39. sse = []

40. k_values = range(1, 11)

41. for k in k_values:

kmeans = KMeans(n_clusters=k, random_state=42)

kmeans.fit(scaled_features)

sse.append(kmeans.inertia_)

42. fig, ax = plt.subplots(figsize=(6, 4))

43. ax.plot(k_values, sse, marker='o')

44. ax.set_title('Metode Elbow untuk Menentukan Jumlah

Cluster')

45. ax.set_xlabel('Jumlah Cluster')

46. ax.set_ylabel('SSE')

47. ax.grid(True)

48. st.pyplot(fig)

49. st.write("Metode Elbow digunakan untuk menentukan

jumlah cluster optimal dengan melihat titik siku pada grafik

SSE (Sum of Squared Errors). Jumlah cluster optimal adalah

saat terjadi penurunan signifikan sebelum stabil. Dari

grafik berikut, kita memilih jumlah cluster optimal sebanyak

3 karena setelah titik ini, penurunan SSE mulai melambat.")

50. # Berdasarkan plot elbow, pilih jumlah cluster optimal

(misalnya 3)

51. optimal_k = 3

52. # Langkah 6: Modeling - K-Means Clustering

53. kmeans = KMeans(n_clusters=optimal_k, random_state=42)

54. kmeans.fit(scaled_features)

55. data['Cluster'] = kmeans.labels_

56. # Ubah indeks cluster dari 0,1,2 menjadi 1,2,3

57. data['Cluster'] = data['Cluster'] + 1

58. # Memberikan nama pada cluster

59. cluster_names = {

1: 'Wilayah dengan dampak korban dan kerusakan

ringan',

2: 'Wilayah dengan dampak korban dan kerusakan

sedang',

3: 'Wilayah dengan dampak korban dan kerusakan berat'

60. }

61. data['Cluster_Name'] =

data['Cluster'].map(cluster_names)

62. st.subheader("Hasil Clustering")

63. st.dataframe(data[['Provinsi','KabKota','Jumlah_Kejadi

an', 'Menderita_dan_Mengungsi', 'Rumah_Terendam', 'Cluster',

'Cluster_Name']])

64. output_file = 'hasil_clustering_banjir.xlsx'

65. # Menyimpan ke dalam BytesIO object dengan openpyxl

66. towrite = BytesIO()

67. with pd.ExcelWriter(towrite, engine='openpyxl') as

writer:

data.to_excel(writer, index=False,

sheet_name='Cluster')

68. towrite.seek(0) # Kembali ke awal stream

86

69. st.write(f"Hasil clustering disimpan dalam file:

{output_file}")

70. # Tombol download

71. st.download_button("Download hasil clustering",

towrite, file_name=output_file, mime="application/vnd.ms-

excel")

72. # Langkah 7: Evaluasi - Perhitungan Silhouette Score

untuk 10 percobaan

73. st.subheader("Evaluasi Model - Silhouette Score")

74. sil_scores = [] # List untuk menyimpan hasil

Silhouette Score dari setiap percobaan

75. for i in range(10):

kmeans_test = KMeans(n_clusters=optimal_k,

random_state=i)

kmeans_test.fit(scaled_features)

score = silhouette_score(scaled_features,

kmeans_test.labels_)

sil_scores.append(score)

st.write(f"Percobaan {i+1} - Silhouette Score:

{score:.4f}") # Menampilkan Silhouette Score setiap

percobaan

76. # Menghitung rata-rata Silhouette Score

77. average_sil_score = np.mean(sil_scores)

78. st.write(f"Rata-rata Silhouette Score dari 10

percobaan: {average_sil_score:.4f}")

79. # Langkah 8: Visualisasi hasil clustering

80. # # Scatter plot untuk visualisasi cluster (2D)

81. # st.subheader("Visualisasi Cluster (2D)")

82. # fig, ax = plt.subplots(figsize=(8, 6))

83. # scatter = ax.scatter(scaled_features[:, 2],

scaled_features[:, 1],

84. # c=data['Cluster'],

cmap='viridis', label='Cluster')

85. # centroids = kmeans.cluster_centers_

86. # ax.scatter(centroids[:, 2], centroids[:, 1], s=200,

c='red', marker='X', label='Centroid')

87. # ax.set_xlabel('Rumah Terendam (scaled)')

88. # ax.set_ylabel('Menderita dan Mengungsi (scaled)

log')

89. # ax.set_title('Clustering Wilayah Berdasarkan Dampak

Banjir (2D)')

90. # fig.colorbar(scatter, label='Cluster')

91. # ax.legend()

92. # st.pyplot(fig)

93. # Scatter plot untuk visualisasi cluster (3D)

94. # Tab untuk visualisasi

95. tab1, tab2, tab3 = st.tabs(["Visualisasi 3D",

"Barchart Per Wilayah", "Pie Chart Per Cluster"])

96. # Tab 1: Visualisasi 3D

97. with tab1:

st.subheader("Visualisasi Cluster (3D)")

st.write("""

87

Di tab ini, kita memvisualisasikan hasil

clustering dalam bentuk grafik tiga dimensi

(3D),

yang memungkinkan kita untuk melihat bagaimana

wilayah-wilayah dikelompokkan berdasarkan tiga

faktor utama:

Jumlah Kejadian, Menderita dan Mengungsi, serta

Rumah Terendam.

Setiap titik di dalam grafik ini mewakili satu

wilayah, dengan warna yang menunjukkan cluster

yang berbeda.

Visualisasi ini membantu kita memahami sebaran

geografis wilayah-wilayah yang mengalami dampak

banjir dengan intensitas yang berbeda-beda.

""")

st.write("""

i. **Keterangan warna:**

- **Ungu** → Cluster 1 (**Dampak

Ringan**)

- **Hijau Kebiruan** → Cluster 2

(**Dampak Sedang**)

- **Kuning** → Cluster 3 (**Dampak

Berat**)

- **Merah X** → **Centroid (Titik Pusat

Cluster)**

ii. """)

fig1 = plt.figure(figsize=(6, 4))

ax1 = fig1.add_subplot(111, projection='3d')

scatter3d = ax1.scatter(scaled_features[:, 0],

scaled_features[:, 1], scaled_features[:, 2],

i. c=data['Cluster'],

cmap='viridis',

label='Cluster')

centroids = kmeans.cluster_centers_

ax1.scatter(centroids[:, 0], centroids[:, 1],

centroids[:, 2], s=200, c='red', marker='X',

label='Centroid')

ax1.set_xlabel('Jumlah Kejadian', fontsize=8)

ax1.set_ylabel('Menderita dan Mengungsi', fontsize=8)

ax1.set_zlabel('Rumah Terendam', fontsize=8)

ax1.set_title('Clustering Wilayah Berdasarkan Dampak

Banjir (3D)')

ax1.legend()

st.pyplot(fig1)

Definisikan data per cluster

cluster1_data = data[data['Cluster'] == 1]

cluster2_data = data[data['Cluster'] == 2]

cluster3_data = data[data['Cluster'] == 3]

88

98. # Tab 2: Barchart per wilayah berdasarkan cluster

99. with tab2:

st.subheader("Barchart Dampak Wilayah Berdasarkan

Cluster")

st.write("""

Pada tab ini, kita menunjukkan bar chart untuk

masing-masing cluster yang menggambarkan jumlah

kejadian banjir di setiap provinsi.

Setiap cluster merepresentasikan wilayah dengan

tingkat dampak yang berbeda, mulai dari ringan

hingga berat.

Dengan melihat bar chart ini, pengguna dapat

membandingkan secara langsung jumlah kejadian

banjir di wilayah yang termasuk dalam setiap

kategori dampak banjir,

serta melihat perbedaan kejadian antarprovinsi

dalam setiap cluster.

""")

fig2, (ax2_1, ax2_2, ax2_3) = plt.subplots(1, 3,

figsize=(18, 6))

Cluster 1

ax2_1.bar(cluster1_data['Provinsi'],

cluster1_data['Jumlah_Kejadian'], color='lightblue')

ax2_1.set_title('Cluster 1: Wilayah Dengan Dampak

Ringan')

ax2_1.set_xlabel('Provinsi')

ax2_1.set_ylabel('Jumlah Kejadian')

ax2_1.tick_params(axis='x', rotation=90)

Cluster 2

ax2_2.bar(cluster2_data['Provinsi'],

cluster2_data['Jumlah_Kejadian'], color='lightgreen')

ax2_2.set_title('Cluster 2: Wilayah Dengan Dampak

Sedang')

ax2_2.set_xlabel('Provinsi')

ax2_2.set_ylabel('Jumlah Kejadian')

ax2_2.tick_params(axis='x', rotation=90)

Cluster 3

ax2_3.bar(cluster3_data['Provinsi'],

cluster3_data['Jumlah_Kejadian'], color='lightcoral')

ax2_3.set_title('Cluster 3: Wilayah Dengan Dampak

Berat')

ax2_3.set_xlabel('Provinsi')

ax2_3.set_ylabel('Jumlah Kejadian')

ax2_3.tick_params(axis='x', rotation=90)

st.pyplot(fig2)

100. # Tab 3: Pie chart per cluster

101. with tab3:

st.subheader("Pie Chart Per Cluster")

st.write("""

i. Tab ini menunjukkan pie chart yang menggambarkan

persentase distribusi wilayah berdasarkan

cluster dampak banjir yang telah terbentuk.

89

Setiap bagian dari pie chart mewakili proporsi

wilayah yang termasuk dalam kategori dampak

banjir ringan, sedang, atau berat.

Visualisasi ini memberikan gambaran umum tentang

bagaimana wilayah-wilayah tersebut terbagi dalam

tiga cluster,

sehingga kita bisa dengan cepat melihat sebaran

dampak banjir di seluruh dataset.

""")

cluster_sizes = data['Cluster_Name'].value_counts()

fig3, ax3 = plt.subplots(figsize=(7, 7))

ax3.pie(cluster_sizes, labels=cluster_sizes.index,

autopct='%1.1f%%', startangle=90,

colors=plt.cm.Paired.colors)

ax3.set_title('Distribusi Wilayah Berdasarkan Dampak

Banjir', fontsize=14)

st.pyplot(fig3)

102. # # Langkah 9: Simpan hasil ke dalam BytesIO

103. # output_file = 'hasil_clustering_banjir.xlsx'

104. # # Menyimpan ke dalam BytesIO object dengan openpyxl

105. # towrite = BytesIO()

106. # with pd.ExcelWriter(towrite, engine='openpyxl') as

writer:

107. # data.to_excel(writer, index=False,

sheet_name='Cluster')

108. # towrite.seek(0) # Kembali ke awal stream

109. # st.write(f"Hasil clustering disimpan dalam file:

{output_file}")

110. # # Tombol download

111. # st.download_button("Download hasil clustering",

towrite, file_name=output_file, mime="application/vnd.ms-

excel")

112. if __name__ == "__main__":

113. show_cluster()

